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General response 

We thank both referees for their thorough consideration and constructive feedback. As a result of 

the review process, we have made a significant effort to improve semantics regarding methods, 

models and algorithms. In the revised version of the manuscript we have replaced the particle 

filtering method by a Hamiltonian Monte Carlo (HMC) approach to sample the full posterior 

distribution, conditioned on the full data vector as is required, rather than just the data up to time t, 

as in the particle filter. HMC is well documented in the literature, and as such, the length section on 

the particle filter has been significantly reduced. We re-did the sampling algorithm from scratch, re-

ran everything and re-made all relevant plots. In practice, we found that the new results are broadly 

similar to the particle filtering results and none of the key findings are changed. We now refer to the 

composite constructed using Gaussian-mixture likelihood and transition prior, with SVD uncertainty 

estimates, as the BAyeSian Integrated and Consolidated (BASIC) composite. 

We note that there are some differences that you should be made aware of compared to the 

previous version. These include:  

- the time-dependent error bars are much tighter, and much closer to Gaussian than before; this is 

good because the DLM analysis will better represent the data with Gaussian errors included; 

- the problem we found (in only a few limited regions) following Pinatubo has gone and BASIC 

performs well during this period, given the data supplied to the process; 

- there is a longer section in the appendix that encompasses requests for information on the 

Gaussian-mixture likelihood construction (in BASIC), and the parameter estimation (in the DLM); 

- Northern and southern hemispheres in the profiles were actually the wrong way around; given the 

symmetry between hemispheres, the conclusions do not change. 

We reply to all comments below, with referee comments in black, and our responses in blue. 

 

Marko Laine (Referee) 
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The PF method is presented like a model, but in fact it is a numerical algorithm 

For example 

line 17: "Particle filtering and DLM", 

line 20: "The particle filter results", 

line 779: "using a particle filter", 

line 804 "the particle filter as a method". 

In my opinion, the distinction between a model for data and a numerical algorithm should be made 

more clear. You should first describe the model (your dynamical mixture-Gaussian model as a 

Bayesian hierarchical model) behind the data merge and then the numerical Monte Carlo filtering 

algorithm (PF/SIR) for actually estimating the merged data set. 

PF (or SIR) is a numerical method of computing a certain Monte Carlo estimate of a posterior 

(predictive) distribution in a dynamical model. You propagate an ensemble ensemble of possible 



model states (time series realizations) by a model (here the assumed month-to-month seasonal 

change and known deficiencies) to produce prior ensemble for the next state, which is then weighted 

by the likelihood function defined by the observed satellite composites. This will form a sample of 

the posterior uncertainty of the merged series given the observation up to the current time point. In 

effect this is a non-linear, non-Gaussian generalization of a Kalman filter. 

You could contrast this to DLM or MLR "methods". DLM (and MLR, too) is a model for the processes 

and the system generating the observations (see below for a general state space description. DLM is 

a structural state space model that constructs a time series from basic building blocks, like trend, 

seasonality and proxies. For DLM one can use Kalman filter and smoother as an estimation 

algorithms. For MLR you can use the least squares algorithm for estimation, but other algorithms are 

available, as well. 

We agree that the semantics regarding methods, models and algorithms needed cleaning up. In the 

updated version we refer to the composite constructed using Gaussian-mixture likelihood and 

transition prior, with SVD uncertainty estimates, as the BAyeSian Integrated and Consolidated 

(BASIC) composite, and refer elsewhere to specific methods and algorithms appropriately. 

 

SVD for uncertainty estimates 

A similar comment is valid for the SVD "method" for construction of uncertainty estimates for the 

individual composites. SVD is an algorithm for a certain matrix decomposition. For the uncertainty 

analysis, you will have a some kind of model based on principle components and then you use the 

SVD algorithm for estimating the components. Is there any references the "SVD" approach used? I 

think the approach would need more motivation. You could write a model for the sources of 

uncertainties for each composite, having a common source and other sources that might be 

instrument specific. Then you could estimate these by principle components. As an example, a model 

for composite di would be di = PiT = p1iT1 + p2iT2 + p3iT3 + p4iT4, where T are the principle 

components and p are the corresponding loadings. Then use it to build a model for variance 

components of a composite d_i, as var(di) = ..., that would include the composite uncertainty as one 

of the components. 

We have updated the discussion of the uncertainty estimation in Section 3.1 to give more clarity 

about the role of the SVD (essentially as a numerical method to implement PCA) and also to more 

fully explain our heuristic error estimation. There are references to use of SVD, but none we are 

aware of in the form we have put forward here. There are no references for this method itself, but 

we have done empirical tests to show that it produces sensible results for reasonably discrepant 

data-sets such as those being analysed here. That said, we explicitly state that more work is needed 

on this aspect of the overall data analysis problem and we fully expect to attempt this in future 

papers. 

Filter vs. smoother 

You should motivate why "filtering" is adequate for the data merge and no "smoothing" is needed. A 

filter calculates p(yt |{dt}) for each t = 1 : T, but not p(yt |{d1:T }) nor the joint distribution p(y1:T 

|{d1:T }). The latter are what are estimated by Kalman smoother in DLM calculations for a linear state 

space model. 

Additional question: could PF be replaced by suitable weighted average of the composites, that just 

takes into account the prior information about problems in the individual series? In DLM and MLR 



you will need to assume Gaussian uncertainty, so the PF results need to be summarized as mean and 

standard deviation.  

What are the benefits of PF over some simpler (non-Monte Carlo) averaging method? 

Thanks for pointing this out. You are correct that the particle filtering algorithm samples from the 

posterior distribution of the true time series conditioned on the data "up to that point", rather than 

the full data vector, and conditioning on the full data vector would require a subsequent smoothing 

step. The smoothing step comes with some considerable technical difficulties - to get around this 

whole issue, in the new version we have abandoned the particle filtering method completely and 

resorted to Hamiltonian Monte Carlo (HMC) sampling to sample the full posterior distribution, 

conditioned on the full data vector as is required. HMC is well suited to ultra-high dimensional 

sampling problems and is well documented in the literature. We re-coded the sampling algorithm 

from scratch, re-ran everything and re-made all relevant plots. In practice, we found that the new 

results (now correctly conditioned on the full data vector) are broadly similar to the particle filtering 

results and none of the key findings are changed. Nonetheless we thank you again for pointing this 

out and the new approach is now correct and more robust. 

Regarding to what extent our method is akin to performing a weighted-average of the composites: 

for sure, some of the data-artefacts will be reduced/removed by taking an inverse-variance weighted 

mean, and for a lot less effort. However, use of the (fat-tailed) Gaussian-mixture likelihood combined 

with the month-to-month transition prior allows our approach to identify where certain data are 

corrupted without a priori knowledge of specific issues — these (many) cases cannot be captured by 

simply averaging. We also provide non-Gaussian uncertainties; it’s true that DLM/MLR assumes 

Gaussian errors, but we encourage extension of these tools to allow for non-Gaussian uncertainties 

and/or marginalization over a full systematics model - this is a first step on a long road to a more 

principled approach to trend analysis from ozone data. 

About MCMC 

I would like to see some MCMC results for the DLM analysis. You are using uniform priors for the 

variance parameters (line 689). Do these parameter identify, especially, if you assume unconstrained 

smoothness for the trend?  

How do the AR parameters identify?  

You use uniform [−1, 1] for the AR parameter, but do you consider negaMve autoregression as a 

realistic model for an ozone observation time series?  

You could include some plots of the posterior distributions. 

Thanks for raising these issues. Over the course of the work we experimented with different prior 

assumptions for the DLM. We found that in some cases leaving the “smoothness of the trend” 

parameter \sigma_trend unconstrained leads to a wiggly “trend" that captures all of the variability 

(with enough burn-in), and in the most recent version we use a half-Gaussian prior on \sigma_trend 

with variance 5e-4. The other parameters are left with improper uniform priors, and the AR 

correlation coefficient prior is updated to being uniform on [0, 1] rather than [-1, 1]— we agree that 

negative AR correlations are difficult to justify physically (although the strictly positive prior made 

little/no different in practice). In tests on simulated data we find that all hyper-parameters identify 

well under these priors - we have included new plots of the parameter posteriors in the appendix. 

General state space model approach 



I suggest that you describe the merge and trend analyses as a general hierarchical state space model. 

In both merging the data and in the DLM analysis you are dealing with a dynamical state space 

model. A general framework to describe the statistical model is by a hierarchical description, with a 

process model for the model state dynamics, a parameter model for model (nuisance) parameters 

and a data model for the likelihood. The Bayes formula would provide the posterior estimate from 

the individual conditional components as (see [1,2,3]): 

[process, parameters|data] ∝ [data|process,parameters][process|parameters][parameters] 

Filtering and smoothing algorithms can be used to estimate various marginal and conditional 

posterior distributions. The nuisance parameter could be integrated out by MCMC, for example. 

For ozone data merge the process model includes the month-to-month variability and external 

events like volcanos, trends etc. The observation processes could describe the instrument effects. 

Lastly, there is the prior distributions for model parameters. The whole will in effect be a hierarchical 

Bayesian model to describe and estimate the state together with the parameters. This could provide 

a common framework for both merging and analysing. 

We agree that the merge and trend analyses should really be done simultaneously in a single 

Bayesian hierarchical model (BHM). We have an on-going project where we are developing a 

sophisticated BHM for analyzing ozone data from scratch, going back to the original instrument 

records and modeling systematics explicitly rather than attempting to merge already-merged 

composites. However, this is well beyond the scope of the current paper, although it is a first step 

that resolves some of the key data-issues and is a coarse approximation to the full BHM approach. 

A related issue that some readers have raised is concern over “using the data twice” — once to 

construct the transition prior (and uncertainty estimates) and once again in the main analysis (i.e. 

posterior sampling). Estimating the prior hyper-parameters and uncertainties a priori and fixing them 

can really be seen as approximation to the full BHM solution. 

To cover these issues, we’ve added a section titled “BASIC as an approximation to a Bayesian 

hierarchical state-space model” where we briefly describe the full BHM approach and make explicit 

the fact that pre-computing the transition prior and uncertainties is an approximation to the BHM 

approach, which is good in the fortuitous case where those pre-computed quantities are strongly 

constrained by the data and do not strongly co-vary with the parameters of interest. 
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Other comments 

line 385, equation (2): I do not see how the parameters γ and β give rise to bimodality for an 

individual composite as the mean is the same d^c_t for both modes. It probably will make the tails of 

the likelihood heavier than for a standard Gaussian likelihood.  

The heavier tails of the likelihoods for individual data points leads to enhanced bi-modality when 

these likelihoods are multiplied together. See the new Figure. A3 and comment/response to reviewer 

1 where the figure has been included there too. 



line 460: The PF distribution is said not to be Gaussian but in DLM and MLR you need Gaussian 

uncertainty. Is this a problem for the trend analysis? 

A “most principled” and optimal trend analysis will consider full non-Gaussian uncertainties. We are 

in the process of developing extensions to DLM that can deal with non-linear models and non-

Gaussian likelihoods - however, this is well beyond the scope of this work. It’s difficult to assess 

quantitatively to what extent the Gaussian assumption biases the trend analysis without knowing the 

“right answer” accounting for non-Gaussian errors. However, we feel that the impact of non-

Gaussian errors is one of a large number of remaining deficiencies in trend analyses performed in the 

community, such as the linear-model assumption, fixed regressor phases etc. It is very likely not the 

biggest evil in this basket of remaining issues.  

line 801: "using the same instrument dataset more than once". The transition prior is inferred from 

the same observations that are used in the model, so the data is used twice. Also, the uncertainty is 

inferred from the same data by SVD. Maybe this is ok here, but it violates the Bayesian assumptions. 

See discussion above under “General state-space model approach” — pre-estimation of the 

transition prior and uncertainties can be thought of as an approximation to the full Bayesian 

hierarchical model. We leave the full hierarchical treatment to future work. 

Can you elaborate more the claim that PF method can resolve the problems in data merging? Do you 

claim that PF is capable to extract the background truth behind different biased estimates. Or does it 

just make the "error bars" larger, so that the trend analysis is not affected by instrument artefacts? 

The heavy-tailed Gaussian-mixture likelihood combined with the transition prior is able to identify 

where one or more datasets are biased, and result in a posterior whose mean is un/less-biased 

without necessarily ballooning the error bar. This can be seen from the fact that the product of 

Gaussian-mixture likelihoods can result in a multi-model joint-likelihood where the widths of the 

individual modes are not expanded as much as for a product of normal Gaussians. If the 

multiplication of the transition prior then excludes one of these modes, the resulting posterior 

effectively rejects the data in the excluded mode and what is left does not necessarily have an 

inflated uncertainty. 

I agree that construction of a merged data set is of interest in itself. For trend analysis one could start 

from individual observations. You could discuss the possibility of a general data fusion approach that 

assimilates all the different composites or individual retrievals to a common time series model. You 

might still be able to use linear model, but with carefully designed (linear) observation operator, that 

would account for the instrument artefacts. Or use some non-linear generalization of DLM. 

As discussed earlier, we completely agree that this is the way forward and have an exciting on-going 

project concerned with exactly this problem, but we feel it’s beyond the scope of the current paper. 

Conclusion 

I can recommend the article to be published, if the author formulate the modelling approach for 

merging and uncertainty estimation a little more consistently, motivate the adequacy of the filter in 

the data merge and the use of SVD for the uncertainty variance components, and describe the 

MCMC results for DLM. 


