Moist Heat Stress on a Hotter Earth
Jonathan Buzan

Community comment on "Future summer warming pattern under climate change is
regulated by lapse-rate changes" by Roman Brogli et al., Weather Clim. Dynam. Discuss.,
https://doi.org/10.5194/wcd-2021-34-CC1, 2021

The review article "Moist Heat Stress on a Hotter Earth" Buzan and Huber, 2020 poses
that moist adiabats control extreme heat. The ideas are built upon by theory from
Williams, Pierrehumbert, and Huber, 2009 where subcloud theta_e is tied to tropopause
theta_e. Recently, observations confirmed subcloud theta_e changes with climate change
in Williams and Pierrehumbert, 2017. Buzan and Huber, 2020 demonstrated that this
applies to all CMIP5 models, and that CMIP5 models nearly have the same change in
theta_e per degree of global change. de Lima et al., 2021 demonstrates that the moist
adiabat changes applies to temperature, humidity, and surface radiation covariances.
Furthermore, the idea that extreme heat is tied to moist adiabats was independently
confirmed using statistical methods in McKinnon and Poppick and Poppick and McKinnon
2020. Lastly, the methods posed by Buzan and Huber 2020 are applied to the CMIP6
archive (Schwingshackl et al., 2021).

This all demonstrats that moist adiabt scaling with global change is robust across
atmospheric model versions, backed up by independent statistical theory, and is observed
in remote sensing. The author's manuscript would be greatly enhanced by citing these
manuscripts, provided below.


Cicero Z de Lima et al 2021 Environ. Res. Lett. 16 044020

