This manuscript reports summer measurements of atmospheric nitrogen oxides (NO$_2$, NO$_x$) of several ppbv above Qiyi Glacier on the Tibetan Plateau (4600 m asl). Based on a close correlation of NO$_x$ with observed UV-B radiation, negative vertical NO$_x$ gradients and presence of nitrate in snow the authors conclude the local snow pack must be an important source of atmospheric NO$_x$, possibly a stronger source than polar snowpacks. While this is an interesting hypothesis related to understanding the atmospheric oxidising capacity above the Tibetan Plateau, I am afraid the study as presented has significant gaps both in the method description as well as data interpretation, and lacks scientific rigour overall. These factors together currently do not support any of the above conclusions.

Most importantly the authors chose to use the LMA-3D Luminox monitor (Unisearch Associates Inc., Ontario, 55 Canada) to measure atmospheric NO$_2$ (NO$_x$), which is to my knowledge currently not used in studies of the remote atmosphere. The company developed this instrument in the 1980s based on a wet-chemical luminescence producing reaction (Drummond et al., 1989), but stopped production to move on to optical methods, which had likely to do with the instrument performance (Joseph et al., 1986; Kelly et al., 1990). After Kelly et al. (1990) there are three main issues to take into account when applying this method:

1) the luminol method has a non-linear response at low (<2ppbv) ambient NO$_2$ concentrations (e.g. Fig. 1 in Kelly et al., 1990), and therefore raw data require correction. This study gives no indication on how, over what concentration range and how frequent the detector was calibrated. If unaccounted for, the error in the reported observations (0.5-2.5 NO$_2$ ppbv) could be an overestimate of 100% or more!

2) Luminol, the reagent solution, undergoes ageing over a period of a few days, resulting in significant changes of sensitivity of >15% (Fig.3 in Kelly et al., 1990), making frequent calibrations and solution exchange mandatory. In this study, no detail is given on how often the solution was changed and what its composition was. Furthermore, frequent
baseline measurement is also needed to correct for instrument drift, partially due to changes in reagent solution; again no detail is given in this study.

3) And finally, interferences from other atmospheric trace gases, especially at low ambient NO\textsubscript{2} (<2ppbv) can introduce significant positive bias in the measured NO\textsubscript{2} but are not discussed in the manuscript. One interference is ozone (O\textsubscript{3}) - assuming O\textsubscript{3} levels of 28-96 ppbv previously measured above the central Tibetan Plateau (Xu et al., 2018) and a cross-sensitivity of 0.0033 ppbv in NO\textsubscript{2} per ppbv O\textsubscript{3} (Kelley et al., 1990), one obtains a potential overestimate of 0.09-0.3 ppbv of NO\textsubscript{2}, thus up to 50% of the reported NO\textsubscript{2} (Fig.3-4, this study) depending on the time of day. This can be overcome by using an O\textsubscript{3}-scrubber, which however also removes some of the NO\textsubscript{2}, again requiring careful calibration. It is not clear if such filter has been used in this study or not. The other interference is from peroxyacetyl nitrate (PAN) with a 25% cross-sensitivity of NO\textsubscript{2} (Kelley et al., 1990). Assuming a previously measured range of 0.36-0.44 ppbv ((Xu et al., 2018) one obtains a potential bias of 0.1 ppbv in NO\textsubscript{2}. The only way for correction is either measuring PAN simultaneously or assuming a reasonable summer value.

In summary, given the lack of detail on the NO\textsubscript{x} method regarding accuracy and precision, and required data corrections (zero offset, nonlinearity, and ozone and PAN interferences) there is little to no confidence in the reported NO (NO\textsubscript{x}) values and statistical significance of the vertical mixing ratio gradients. In fact, the NO\textsubscript{x} values are very likely significantly overestimated. Thus further discussion on a potential snowpack source is not warranted at this stage. Another flaw is that the discussion about the relative importance of a NO\textsubscript{x} snowpack source based on gas phase concentrations does not include analysis of other relevant parameters (turbulence, boundary layer height) and processes (e.g. transport via down-ward mixing from the free troposphere). I therefore cannot recommend to go any further with this manuscript.

SPECIFIC COMMENTS

L10-11 concentrations or flux?

L14 “hardly” detected? Below limit of detection?

L16 “vertical experiments” - you mean gradients?

L42-3 Antarctic surface snow nitrate concentration can be even higher (e.g. Erbland et al., 2013)

L58 LOD of <10 pptv? this is either a typo or evidence such as a calibration curve needs
to be presented (see comments above)

Section 3.2 - where and how were snow samples taken, i.e. just surface snow or pit profiles?

Section 3.4 - were vertical gradients of NOx measured through the same inlet? If not, was an inlet comparison done? The variability (error bars) is large, and often the difference in concentrations does not seem significant.

REFERENCES

