Thank you for your thoughtful feedback.

I believe sections 1 and 2 would benefit greatly from a figure showing a sketch of the simulated flow, and some relevant physical quantities and conditions, e.g. the angles alpha and beta, etc.

*We have added a schematic figure, now labeled Figure 1.*

![Figure 1. Schematic of the simulated ocean domain with background pressure gradient dp/dy. Purple arrow is oriented north and green arrow is aligned with gravitational acceleration. *The bottom boundary condition is Dirichlet, but there is also no flux as a result of damping.*](image)

Also, if I'm not mistaking, the numerical methods used by the LES solver are not discussed. They should at least be mentioned briefly.

*This is a good suggestion, particularly as PALM has several methods available for advection, timestepping, and pressure. We have added the following text: “We employ PALM’s implementation of the Piacsek and Williams (1970) second-order advection scheme for momentum and scalars and a third-order Runge-Kutta timestepping scheme. We also use the Temperton (1992) Fast-Fourier Transform algorithm for the pressure solver.”*