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R2.C1 Line 120, could you provide more details in the ocean/lake effect removal?
Although the SSMIS observations has been downscaled to 3.125 km resolution,
however considering the bigger footprint of 36.5 GHz (4*6 km~2), can the water
effect truly be excluded in the pixels near the ocean/lake? As can be seen from
Figure 1, at CB for example, there are truly only a few grids that are lake free.
How the influence of lake was considered?

Agreed, the influence of ocean or liquid water from deep lakes cannot be excluded if the
pixel is 25 km (full resolution) from the coast. The snowpit area is within 25 km from the
ocean so another area just outside 25 km was chosen. We skipped over this explanation
originally. Our goal was to select a typical “arctic snow” area with so we could evaluate
the CV_sd and DHF effect in PMW simulation. The following was added in section 2.3 to
clarify water contribution.

For CB, an area with the same spatial coverage but a slightly different location was used
since the snowpit area was within 25 km (resampled pixel resolution of SSMIS) from the
ocean. The lakes in CB shown in Figure 1 were not considered in the soil emission
contribution because most of the water was frozen (4-6) (Mironov et al., 2010), which had
a similar permittivity to frozen soil (2-4) (Mavrovic et al., 2021) than liquid water.
However, this simplification had importance for 19 GHz given that soil emission has a
greater influence on the signal at this frequency, hence the composition of frozen water
and soil derived from landcover information should be used instead. Since 37 GHz is more
sensitive to snow volume scattering, this step was neglected. The 19 GHz frequency was
briefly used in this study in Figure 7 (old version) only for TVC in 2018 to investigate the
effect of snow variability which modifies the amount of snow scatterers inside the
radiometer’s footprint.

R2.C2 Line 120, also, the snowpit measurements were at point scale whereas the
Tb data is at 3.1.25 km. Why and how the Tb data was averaged to match the
point scale measurements? To which resolution was it averaged?

The following was added in section 2.3.



for both TVC and CB regions. A single value of measured T_B (per frequency) were used
by averaging all pixels within snow pits area (CB: 24 pixels, TVC: 14 pixels for 37 GHz).
Each pixel with at least one snow pit inside was used. Since all snow pits were aggregated
to obtain mean value and distribution of snow properties for SMRT, averaged T_B covering
the snow pits area was used.

R2.C3 Line 249: this line reads like the density and SSA of each of the two layers
were estimated as a function of snow depth and DHF, too.

This sentence was removed for clarity.

R2.C4 To my understand, the DHF was determined only by one parameter, i.e.,
the snow depth. The prior information is the probability distribution of snow
depth and the relationship between DHF and snow depth described in Figure 5.
Therefore, the generated DHF (posterior DHF field) described in Figure 6 has also
some random characteristics. In other words, Figure 6 is only a realization of
DHF, one of the possibilities. The scatter points are not fixed, determined values.
Therefore, will a different realization influence your TB simulation results?

Your understanding is correct. Different realizations are shown by the + 2¢ region in
Figure 8 and 9. It is not explained in the text but the uncertainty (20) is estimated by
generating the same experiment of simulating T_B for the CV_sd range of 0.1 to 1
(basically Figure 7b) 20 times. The mean and std of those 20 simulations are shown by
the middle line and the 20 range of those realizations.

R2.C5 Figure 7, it will be more interesting to provide an estimation of
distribution of TB difference between 18.7 and 36.5 GHz. The authors need to
explain why the TBthat considers the sub-pixel variability is higher when the
standard deviation of snow depth is higher. Is it because when the snow depth is
higher, the reduced variability of DHF will result in less samples of strong volume
scattering, such that the TB at 36.5 GHz will increase? In addition, will this result
be influenced by the soil emission background?

We decided to briefly add 19 GHz in figure 7 (old version) so the small effect (negligeable)
from CV on 19 GHz simulation could be shown. See addition from comment R2.C1 about
soil contribution and the addition of 19 GHz in the data section. Figure 7 was updated so
37 and 19 GHz are both shown for TVC18.

(see pdf for image)
This part was added to the result section 3.4.

The addition of snow variability in simulation (Figure 7 c-d) of 19 GHz has negligeable
effect on T_B19 and showed a constant simulation across the CV_sd range of 0.1 to 1.
Simulation of T_B19 showed higher biases at horizontal polarization then vertical
polarization.

To address the second questions in the comment, the following paragraph was
added in the discussion (section 4)

Considering that the difference between 19 and 37 GHz is used in SWE retrievals (Takala
et al., 2011), using the CV_sd to account for variability of scatterers only affected
simulation of 37 GHz with no effect on 19 GHz (Figure 7). If standard deviation of snow



increases (more drift) then relatively fewer large scatterers from depth hoar are present
within the footprint due to a low DHF in large drifts. The net result is then an increase in
T_B at 37 GHz resulting from an increase in CV_sd (Figure 7).

R2.C6 How the effect of vegetation was considered in the simulation?

The effect of vegetation was not considered because it is not accounted in tundra snow
retrievals (Saberi et al., 2020). Shrubs and tussock are not considered as trees or tall
vegetation with significant interaction. Some studies do account for vegetation interaction
with PMW but in sub-arctic areas with trees (Derksen et al., 2012; Larue et al., 2018; Roy
et al., 2012). The interaction is based on vegetation product like Leaf Area Index which
are not available for small vegetation like shrub.

R2.C7 Line 25: Snow depth simulations ---> do you mean the retrieved snow
depth, or the brightness temperature simulations?

This sentence was modified.

SMRT simulations using a CV_sd of 0.9 best matched CV_sd observations [...]

R2.C8 Line 40: dielectric properties ---> suggested to change to radiometric
properties

Modification done.

R2.C9 Line 75: More words is need to explain the Gaussian Process (GP) when
this term first appears here. Maybe it is better to first mention it between lines
60-65.

The following sentence was modified by removing Gaussian Processes to avoid confusion.

which suggested the use of a term involving variation in snow depth and microstructure
within the footprint instead of a uniform snow depth.

This sentence was also modified in the next introduction paragraph when stating the
objectives of the study.

Finally, we perform a Gaussian Process fit to estimate depth hoar fraction (DHF) from
snow depth, using probability density functions of snow depth to add variation of snow
depth and microstructure within the footprint.

R2.C10 Line 81: are the snow microstructure and density values used here single
values or probability distributions? Are they determined according to the in-situ
snowpit observations?

We presented probability distributions of microstructure and density values, but single
values (mean values) were used in the final simulation. The distributions are shown so
they can be used in future MCMC retrievals as priors.

This sentence was modified as follows.

Secondly, we presented in situ measurements of snow microstructure and density in both



main tundra snow layers (depth hoar and wind slab), mean ratios of layer thickness and
the depth hoar fraction (DHF) relative to snow depth.

R2.C11 Figure 5(b) was not described in the caption.
The following was added in the caption.

b) DHF is shown as a function of NVDI from the snowpit area with the mean DHF and
NDVI shown by dashed lines and the gaussian distributions of DHF by the solid lines.
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