

The Cryosphere Discuss., author comment AC1 https://doi.org/10.5194/tc-2020-354-AC1, 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Reply on RC4

Mathieu Plante and L. Bruno Tremblay

Author comment on "A generalized stress correction scheme for the Maxwell elasto-brittle rheology: impact on the fracture angles and deformations" by Mathieu Plante and L. Bruno Tremblay, The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-354-AC1, 2021

It is correct that the stress correction Ψ is a scalar, but the reviewer missed the fact that we use a decohesive stress tensor (σ_D) to bring the stress back onto the yield curve, and which depends on the correction path angle (see Eqs 18-20, discussion on L150-161, Fig 1, and derivation below).

Therefore, the corrected normal stress invariant reads:

 $\sigma_{\rm Ic} = \Psi \sigma'_{\rm I} + \sigma_{\rm ID}$,

rather then $\sigma_{Ic} = \Psi \sigma'_{I}$, which was the reviewer's concern.

The components of the decohesive stress tensor are then retrieved using the yield criterion, such that:

 $(c - \sigma_{IIc})/\mu = \Psi \sigma'_{I} + \sigma_{ID}$,

or,

 $\sigma_{ID} = (c - \sigma_{IIc})/\mu - \Psi \sigma'_{I}$,

Using the relation $\sigma_{IIc} = \Psi \sigma'_{II}$ (by construction, see Fig. 1), we get Eq. 19 (where there was a typo):

 $\sigma_{\rm ID}$ = (c - $\Psi(\sigma'_{\rm II}$ + $\sigma'_{\rm I})$) /µ ,

In which Ψ depends on the correction path angle. We can provide a more complete derivation in this thread if desired.