Review of “Analogue modelling of basin inversion: a review and future perspectives”. 

Authors: Frank Zwaan, Guido Schreurs, Susanne J.H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf and Ernst Willingshofer.

Overview and recommendation

This article is a review of analogue modelling studies of basin inversion processes. The introduction is well organised and well written. The authors give a clear definition of the process of basin inversion in the context of their review. The aim of this review is clear, and the outline of the article is presented.

In a first part, the authors give an up-to-date state of the art about basin inversions processes through analogue modelling studies. They present the mechanics of basin inversion, analogue modelling techniques, as well as detailed setups examples and typical scaling parameters. Representative results of basin inversion are presented based on their setup. Insights about the governing parameters of basin inversion are given.

The authors then compared analogue and numerical models of basin inversions. I think it is a good idea to make such comparison. I understand it is not the scope of the publication, but this part could be improved a bit by giving more detailed examples. By comparison to natural examples, the authors show the limitation of analogue modelling of basin inversion. To finish, the authors give perspectives and recommendations for future analogue modelling studies of basin inversion.
I think that the subject of this article is interesting and very attractive for the readers of Solid Earth. The authors provide an impressive overview of what has been done and what should be improved in future analogue modelling studies of basin inversion. The overall manuscript very well organized, well written, and well illustrated. I recommend accepting this article with really minor revisions.

Minor comments

- Line 138: The title of part 2 is missing (before 2.1 Mechanics of basin inversion).
- The authors did not mention anything about edge effects along the sidewalls of the model setups. Could there be such effects in the different initial conditions presented in the study? If yes, how to prevent edge effect or how to characterise it?
- Figure 15 has a low resolution. Please improve it.
- Caër et al., (2015) provide a parametric analysis of the reactivation of a normal fault through numerical modelling using Limit Analysis. I think Limit Analysis could be mentioned as a numerical modelling technique. This methodology requires few inputs parameter. As such, it is in a way close to analogue modelling and could be easily compared to it.