General Comments

The authors present updated landslide susceptibility maps for in the Philippines Itogon and Abuan derived from typhoon-triggered landslide inventories. Binary Logistic Regression (BLR) and a Least Absolute Shrinkage and Selection Operator (LASSO) technique for the selection of variables were used to model the susceptibility of this region. Susceptibility models derived from independent and a combination of the 2009 and 2018 events were created in Itogon. A susceptibility model was also derived in Abuan based on a 2019 typhoon event.

Their results present information that emphasizes the importance of utilizing multi-temporal inventories in developing future susceptibility maps to inform land use and hazard zonation policies.

However, there are two significant points that should be considered to improve this manuscript:

First, the results of two different study areas considering 3 events across time that aim to assess a research objective that operates on the hypothesis that the time dependence of typhoon-triggered landslides in a region would be evident in the deterioration of model accuracy.

The results of the Itogon region with events from 2009 and 2018 sufficiently address this research question and provide quantified information on the temporal behavior of landslide susceptibility across time. The analysis of these results should already merit publication.

The inclusion of the results in the 2019 landslides from Abuan deviate from the direction of evaluating time-dependent susceptibility. The comparison of the model in Abuan to Itogon veers towards investigating regional and spatial differences between the sites in which these typhoon-triggered landslide occurred. I would recommend a separate study to focuses on the spatial and not temporal aspect of typhoon-triggered susceptibility be considered for the Abuan results.

Response – we are keen to retain the Abuan work within the paper as whilst we agree with the reviewer that the spatial element is less well quantified than the
spatial, we are of the opinion that it adds other important elements to the discussion. E.g. whether no susceptibility map is better than a “bad one”. It also allows us to “set the scene” and provide motivation for a separate study on the spatial and regional difference as the reviewer suggests.

Second, the authors could consider referencing an updated Landslide Hazard Atlas of susceptibility maps generated by the University of the Philippines Resilience Institute and the Nationwide Operational Assessment of Hazards (NOAH), available at https://noah.up.edu.ph, rather than the MGB susceptibility maps. The landslide hazard maps are available on a national level and are used in practice for hazard zonation and land use planning. A large section in their discussion could benefit from comparing their results to the NOAH hazard information.

Response – we agree with the reviewer that reference to and comparison with the NOAH maps will be beneficial. And will add such reference and discussion throughout the paper where applicable.

The most important contribution of this study to the community is the quantified deterioration of susceptibility model performance accuracy in Itogon that typhoon-triggered landslides display a degree of dependency across time.

Overall, I recommend that the authors update their hazard information for better context in the discussion and to highlight the improvement of susceptibility information with multi-temporal landslide inventory. I also recommend that the authors contemplate on the exclusion of the 2019 Abuan landslides in this study. The results do not support the research objective’s underlying hypothesis to consider the time-dependence of typhoon-triggered landslides.

Response – as highlighted above, we will update our hazard information to include reference and discussion of the NOAH maps/information. Following discussion with the co-authors, we prefer to keep the Abuan elements of the paper but will re-phrase and re-structure the abstract/introduction to ensure that the preliminary consideration of the spatial element is also an aim of the paper.

Specific Comments

L45-50: Consider incorporating the landslide hazard information from the NOAH Landslide Hazard atlas. This information would be beneficial to further realizing the contribution made by this study in Itogon for typhoon-triggered landslides.

Response – yes, we will incorporate this and agree it will be beneficial for highlighting the contributions of this study.

L61-63: The concept of spatial and temporal dependence introduced in this section could be strengthened by a connection to the path-dependence of landslides by Temme et al. (2020).

Response – we agree, and will add sentences to connect and refer to the Temme paper.

L93: The use of the term time-dependence could pertain susceptibility during typhoon season, or within a sub-seasonal period. I recommend the authors to consider rephrasing this to a path-dependent perspective and connect to the concepts of Temme et al. (2020) and the results of the multi-temporal susceptibility analysis of Samia et al. (2020).

Response – we consider that there is a subtle difference between general time-dependence (which includes anything that makes landslides temporally dependent) and path-dependency, which predominantly considers how past landslides have a time-dependent influence on landslides. However, we agree with the reviewer that these terms could do with better defining in the context of each other, so will update the text to include reference to and better explanation of the Samia path dependency concepts.

L189: Why was the inventory slightly clipped? It also would be worth mentioning a brief qualitative comparison between this inventory 2018 Mangkhut and that of Emberson et al. (2022).

Response – the inventory was clipped to match the watershed boundary. We will include a brief comparison with the Emberson paper as we agree that this would be beneficial.
These paragraphs are presented in a way that focuses on events across time, but gives the impression that the 2009, 2018 and 2019 landslides occurred on spatially similar settings or even same site. Splitting the presentation of results into two paragraphs (one for Abuan and one for Itogon) to discuss the separate geographic sites could make it clearer.

Response – we agree that this section could be better structured, so will rephrase / re-structure to make this clearer as suggested.

Is there any insight on the hazard between 2009 and 2018 in Itogon that can be derived from the susceptibility models? Any insight on susceptibility or changes that could’ve caused landslides to occurred with smaller passing tropical cyclones within these 9 years? (Referring as well to insight from Figure 4)

Response – it is difficult to make any detailed inference on what caused the changes between 2009 and 2018 without any landslide data and trigger data in that 9 year period. We will add a few sentences discussing possible changes between the two dates and make reference to potential future work that could acquire more time slices of landslide data between 2009 and 2018 to properly assess what might cause changes in this period.

Please refer to the Landslide Hazard information from the susceptibility maps of NOAH to provide an updated hazard context for this section of the discussion.

Response – we will add reference to and discussion around NOAH as suggested.

These are valid concerns and points of uncertainty raised for the Abuan susceptibility results. Though, the alignment of these results the objectives presented in L93-95 are not clear.

Response – we will update/ re-phrase the objectives so they better align with these results.

While magnitude underestimation is a limitation in the use of satellite-derived rainfall products, another factor worth discussing is the limitation to capture spatial patterns and locate the storm centers when using such products. (See Ozturk et al., 2021)

Response – we agree that this would an interesting element to add to the discussion, so will include a few new sentences to consider this as suggested.

Table 1. Shows that land cover is significant for the 2009 and combined
2009+2018 model. It would worth mentioning the role of land cover change that could have an influence susceptibility over time. Itogon is estimated have had significant tree cover loss between 2010 and 2020 based on: Global Forest Watch, http://globalforestwatch.org.

Response – we agree that land use change could be important so will add a paragraph to the discussion considering this as suggested.

Technical Corrections

L32: ‘>30°’ to >30°

Figure 6. Consider using ‘performance’ rather than ‘success’

Figure 7. Consider using ‘performance’ rather than ‘success’

Response – we will correct the degree symbol and change to performance.