In the following we are answering (in bold writing) the comments/suggestions of the reviewer RC2 (in italic writing):

Overall, a nice paper describing the potential of the region to produce moderate tsunamis, the typical result of such tsunamis, and a comparison of the recent tsunami with modeled results. I would recommend this paper be published with some minor revisions. My criticisms and suggestions follow:

Since source scenario #2 (inverted from DART and gauge waveforms) is the one determined to best fit the data and is singled out in the discussion section, some description of how it was obtained would be nice as the Gusman et al publication has not been published yet. Particularly since good inversions from coastal gauges have historically been difficult to produce due to the fact that nonlinear effects become more important in the shallow bays and coastlines where tide gauges are typically installed. It’s been the subject of enough debate that simply referencing an unpublished manuscript is not quite sufficient here (though perhaps it would be if it weren’t chosen as the featured source in this paper). Also, no figure showing the slip distribution is offered, nor a figure of the resulting dislocation. Nothing in the way of how much data were used or why coastal gauges can be used in this case, or whether tides were inverted with the data, or detided and then inverted. Not to say the inversion is not a good one, but that inversions with coastal gauges has not always been too successful and this source is the one picked out as best for this event. Please provide a little more info on how the inversion was produced and perhaps a figure of the slip distribution.

- **Concerning the slip distribution model from waveforms inversion, the other manuscript is currently with the editor for a decision. Hopefully we could have the other manuscript accepted soon. To prevent a dual publication, we would like to refer to Gusman et al. for the slip distribution which is already available as a proof (https://www.essoar.org/doi/10.1002/essoar.10507385.1). We can provide a plot for the slip distribution as requested by the reviewer.**

Regarding the phase of the time series in the paper, page 19, 2nd paragraph, "These authors developed a method to correct the phase of the simulated waveforms..." do you mean "The authors" (yourselves) or the authors of Watada, et al? In either case, please elaborate briefly: were the phases adjusted manually or by some computational method.
You state that the phase-change method reduces amplitude - do you find that overall modeling results underestimate due to this phase reduction? This seems important to clarify because you are, after all, judging the sources in the paper largely by the accuracy of the modeled time series.

- The method to correct the simulated waveforms has been developed by Watada et al. (2014). We would like to clarify that we have calculated the phase correction with a computer code but not manually. We could provide another plot showing the simulated waveforms with and without phase correction at a selected DART station if requested. More details will be provided in an updated version of the manuscript.

Lastly, the choice of the 3rd source in the overall study of regional hazard assessment addressed in this paper supposes, rationally, that if the 2021 event is Mw 7.7, that a larger one may occur in the future. The question becomes why did the authors choose Mw 8.2 as an appropriate maximum for the region? You cite a range of magnitudes from Ioualalen et al (2017), Gutenberg (1956), Richter (1958) and Engdahl and Villasenor (2002), but why choose 8.2 specifically? Did I miss an estimate of rupture length limit, or strain rate? Or perhaps is Mw 8.2 not implied as the maximum for this region of this subduction zone? Simply make it clear that this is an estimate of the maximum along this section of the fault and why.

- This magnitude Mw 8.2 scenario has been built using:
 - The estimation of maximum magnitude of Mw8.1-8.2 for the 1875 South Vanuatu earthquake by Ioualalen et al. (2017)
 - The fact that the earthquakes location and the calculated moment tensor solutions (USGS and GCMT) provide an available subduction zone length (∼250-300 km) in the south of the VSZ which can accommodate a Mw8.2-8.3 according to the empirical relationships from Strasser et al. (2010)
 - The maximum value in the USGS earthquake catalogue for the Vanuatu subduction zone is Mw8.1 for the 21 Sep. 1920 earthquake.
 - A scenario following the curve of the VSZ and going on toward the north would produce a larger magnitude but
 - We don’t know if the rupture would be able to go through the area where the Loyalty Ridge is subducted
 - The aim of the study was to discuss the impact of one larger realistic case at a regional scale instead of testing all possibilities

The following comments I hope will make the paper a little more clear. My apologies if I criticize unnecessarily: I will try not to suggest changes that only affect tone and do not detract from the science.

In 48, name change from New Hebrides SZ to Vanuatu SZ: my question "who gets to name these things"? Call it a chocolate lollipop for all I care, but is VSZ the generally-accepted replacement for NWSZ? Why did it change? If you mention it at all ("...former New Hebrides Subduction Zone...") then perhaps noting why it changed would please the reader.

- We decided to change the name in a previous paper about the Tadine tsunami of 5 December 2018. “New Hebrides” is related to the colonial times of what became “Republic of Vanuatu” in 1980. This change respects both this political change, and the population of Vanuatu amongst which we have colleagues and friends.

In 81, convergence rate "in the northern part" are stated as 16-17 cm/y, but Figure 1
white arrow only shows 12 cm/y. If the larger value is farther north than the figure shows, then perhaps mention it?

- **It will be mentioned in an updated version of the manuscript.**

In 118, ah I see, you note that the 12 cm/y is the "southern part of the VSZ". Perhaps mention that the 16-17 cm/y values are outside the the figure 1 extents?

- **See previous comment**

In 106, is the word "crises" a seismic term?

- Yes, it is.

pg 13, 2nd paragraph ". . . DART station relatively to the strike . . .": change to "relative to the strike"

- **It will be changed in the updated version of the manuscript.**

Figure 4, some gauge arrival time blue lines are too thin to see (OUIN), and some don't show an obvious wave (LEVU), though sometimes this can be hard to determine and can be dwarfed by the tidal amplitude on the plot. Consider using a thicker blue line?

- **The lines will be redrawn thicker.**

Figure 9: the lines are so thin that I can almost not tell the difference in color between yellow and red. Please make these thicker even if it masks some high-frequency oscillations. For some reason Figure 10 is much easier to read.

- **As suggested by the reviewer RC1, the lines will be redrawn thicker.**

Figure 10 caption: don't use "respectively" for color-coding: it is confusing. Simply list each source and put the color in parenthesis after OR (since you have a legend) use the source number like so: "the simulated signal for a Mw 7.7 uniform slip model (source #1)", etc

- **Good idea, the caption will be modified according to this comment.**

Page 17, last sentence: good point about the west coast of New Zealand being susceptible to tsunami, but the word "still" implies that waves are high despite this event, not because of it. Consider "also shows amplitudes of more than 1 m."

- The sentence will be improved according to the comment.

Page 31, lines 44-46: the authors state that "...Vanuatu [is] exposed to tsunami hazard ... even if they are not directly exposed". I think the meaning is that Vanuatu is exposed to high tsunami hazard even if the main wave energy of a given tsunami does not directly focused at Vanuatu?

- Absolutely, we also think that the sentence is hazardous, we will rephrase it in a more understandable way.