AUTHOR'S GENERAL COMMENT: We would like to thank the reviewer for constructive comments. We have responded to the reviewer's comments and we have made the required revisions to the manuscript. We believe the revised version of the manuscript, which addresses the reviewer's comments, is now more consistent with the current literature and clarifies the important points raised by the reviewer. With the changes, the manuscript is re-submitted in a clean format to the Journal. Please also find below my response to reviewer comments.

REVIEWER 1:

GENERAL COMMENTS: In the manuscript (nhess-2022-121), the potential effects of tsunami and flood hazards to the residential region of the west part of the Mediterranean Sea are examined numerically. Multi-hazard analyses of flood and tsunami events are rare in the literature. Hence, the research is notable in terms of taking proper precautions against marine-caused natural hazards and ensuring population safety. The methodology proposed in the manuscript has the potential to motivate researchers to conduct similar studies. The manuscript is well organized and clear. The manuscript is of interest to NHESS Journal's readers. I believe that the manuscript will be much better if the points raised below are revised.

AUTHORS RESPONSE: Authors appreciate the constructive comments of this reviewer. The objective of the manuscript is clearly enlightened by the reviewer.

REVIEW COMMENTS:

1.1. Line 1: Combination of flood and tsunami hazards may not possible in general. Considering the flow of the manuscript content, a multi-hazard analysis of flood and tsunami definition is more proper than the definition of a combination of these two hazards. Please change the "combined hazard analysis" to "multi-hazard analysis" in the text?

AUTHORS RESPONSE: We appreciate the reviewer's comments. All the definitions mentioning the bilateral analysis of tsunami and flood hazards are replaced with “multi-hazard” instead of “combined hazard”.
1.2. Line 48: Flood hazard can be defined as epistemic uncertainty as mentioned in the abstract. Please fix the definition of stochastic analysis of flood as epistemic uncertainty instead of aleatory variability.

AUTHORS RESPONSE: We appreciate the reviewer’s comments. In L46-L48, “The exceedance of flood hazard is strongly likely depending on geological and meteorological circumstances, the hazard is included in the stochastic analyses conducted in this study as aleatory variability” sentence is modified as “The exceedance of flood hazard is strongly likely depending on geological and meteorological circumstances, the hazard is included in the stochastic analyses conducted in this study as epistemic uncertainty”.

1.3. Line 49: Tsunami hazard can be defined as aleatory variability by focusing on the exceedance probabilities in the tsunami hazard curves. In the abstract, it is mentioned that statistical analysis of tsunamis is conducted as aleatory variability. Please change the sentence accordingly.

AUTHORS RESPONSE: We appreciate the reviewer’s comments. In L48-L49, “Since the occurrence of the tsunami is generally rare compared with flood hazards, tsunami events are inspected by considering epistemic uncertainty in this study” sentence is modified as “Since the occurrence of the tsunami is generally rare compared with flood hazards, tsunami events are inspected by considering aleatory variability in this study”.

1.4. Line 91: Statistical approach should also be aleatory variability for tsunamis.

AUTHORS RESPONSE: We appreciate the reviewer’s comments. In L91, we made the required change.

1.5. Line 107: hypocenter should be replaced with hypocenter distance.

AUTHORS RESPONSE: We appreciate the reviewer’s comments. In L107, we added the required word.

1.6. Line 107: One of the reasons for dip angle assignment should be the width of the fault (W). Please explain the reason of assigning dip angles as mentioned in the text clearly to the hypothetical earthquake sources.

AUTHORS RESPONSE: We appreciate the reviewer’s comments. We appreciate the reviewer’s comments. In L107, “Depending on the hypocenter distance of the hypothetical earthquake, dip angles are assigned as 300, 600, and 900” sentence is modified as “In this study, the asperity position of the hypocenter is assumed to be at the center of the fault and hypocenter distances are directly obtained from the historical earthquake dataset. In some circumstances, hypocenter distances are smaller than the calculated W values. This phenomenon causes some problematic solutions. To prevent this kind of miscalculations, dip angles are randomly assigned as 300, 600, and 900 to the grouped hypocenter distances considering the W values as well.”.
1.7. Figure 7: The quality of Figure 7 should be improved.

AUTHORS RESPONSE: We appreciate the reviewer’s comments. The resolution of the figure is enhanced as mentioned.

1.8. Figure 8: Please improve the resolution of the Figure.

AUTHOR’S RESPONSE: We appreciate the reviewer’s comments. The resolution of the figure is enhanced as mentioned.