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With gratitude for the reviewer’s interest in our article, we draw attention to a few points
regarding his comments:

Comment 1:

- According to the reviewer, the correlation between water level and seismic activity at the
Dead Sea Basin is insignificant (our Fig.1).

Response:

Our earlier work demonstrated a correlation between water level and the recurrence
interval of Dead Sea earthquakes (Belferman et al., 2018, Fig. 9). The present study
(Figure 2 and corresponding text – pp. 13, lines 236-237 and Eq.7) indicates that the
correlation between seismicity and water level change might even be higher than that
demonstrated in Belferman et al., 2018 (Fig. 9). We explain that significant uncertainties
in the water level data-set might hide the correlation (please see pp.3 50-71).

 

 - Seismicity occurs equally at high and low levels (the reviewer refers us to Fig. 1 c and
d)

Response:

Our model does not preclude seismic activity during water level drops, it just takes longer
for the loading to reach the increased threshold. We even predict the next future
earthquake, when levels are projected to reach an unprecedented low. The reviewer
writes about the correlation between the water level and seismic activity; please note -
Fig.2c,d shows that the change in level inversely correlates with the recurrence interval of
earthquakes, rather than with "seismic activity". In the submitted paper the linear
correlation is clearly visible in the figures, especially in figure 1c. The Pearson correlation
coefficient reported in detail should make this point clear.

 



- According to the reviewer, all change in seismic activity is due to changes in the tectonic
loading and the state of the solid crust. By his assessment, the water level change has a
minor effect.

 Response:

Tectonic motion is the primary cause and consequence of earthquakes in our model as
well, but it is worth considering other factors triggering earthquakes. We refer the
reviewer to our Introduction section: water level induced seismicity in particular, and
anthropogenically induced seismicity in general, are broadly recognized phenomena over
the world.

The seismic response has been observed to be connected to reservoir impoundments and
their seasonal water level variations (Gupta, 1992; Talwani, 1997; Tomic et al., 2009;
Hua et al., 2013).

Davies et al. (2013) compiled 198 examples of anthropogenically induced seismicity since
1929 all over the world, where higher magnitude earthquakes within this list (up to 7.9, in
Zipingpu reservoir area, China 2006) are most often associated with reservoir
impoundment. Foulger et al. (2018) presented a comprehensive and up-to-date database
of seismicity induced or potentially induced by anthropogenic sources.

van der Elst et al. 2016 show that the appearance of induced seismicity requires a
reconsideration of seismic hazards, even in regions of formerly negligible seismic concern.
Simpson et al. 2018 & Gupta 2018 indicate many statistical studies that reaffirm this
correlation.

In our previous work (Belferman et al., 2018), we indicated that this phenomenon may
even be more applicable to the historic lakes, like those occupying the tectonic depression
of the Dead Sea, due to the larger scale of water level fluctuations. The post-diffusion
stage (when pore pressure at all depth approaches the value at the lake bed), is relevant
for early historical data. At this stage, an increase in pore pressure due to the water level
rise always dominates over the loading effect, leading to varying but always negative
normal effective horizontal stress change at any combination of poroelastic constants
(please see Belferman et al., 2018 Fig. 5b). This should trigger earthquakes with
magnitudes higher than those in the corresponding immediate undrained (rapid)
response, coming shortly after the corresponding water level rise (confirmed, for instance,
for Lake Mead, Gupta, 2002; Simpson et al., 1988; Monticello reservoir, Rajendran and
Talwani, 1992, and others). 

 

 Comment 2:

- The reviewer doubts the assumption that the effective normal vertical stress vanishes,
and argues that given a reasonable permeability, it will take millions of years. In
particular, he argues that between seismic events, faults heal and the permeability of the
faults is very low. He chose the Ein-Feshkha spring, very close to an exposed fault, to
argue for a lack of hydraulic connection with the deep aquifers.

Response:

Some of the material characteristics in fault zones may vary significantly, depending on
the types of host rock and on state variables (e.g. temperature, pore pressure, depth,
etc.). Specifically, values of hydraulic diffusivity of intact rocks differ considerably among
rock types (Rice and Cleary, 1976), and strongly decay with depth (e.g. by ~6 orders of



magnitude at a depth of 20 km compared to the shallow crustal values (Ingebritsen and
Manning, 2010). However, such laboratory values are not determined under conditions
approaching hydrofracture. Pore pressure diffusion in fault zones is usually dominated by
fault damage zones, which act as conduits (Simpson et al., 1988). The reviewer mentions
damage processes as a possible determinant of seismicity fluctuations. We totally agree
and refer to Hamiel et al. (2005) where we simulated how, under damage accumulation,
slender porous zones evolve and become faults. Recently, a poroelastic analysis by Jim
Rice’s group of a real case of induced seismicity considered a realistic
damage/permeability structure with a fault core and anisotropic damage/permeability
zones. They have shown that the permeable zones indeed propagate from shallow depths
to the seismogenic zone with hydraulic fracture (Yehya et al., 2018). In fact, a useful
illustration of a related phenomenon was given by Yechieli and Bein (2002), preceding the
largest instrumental earthquake on the Dead Sea Transform - the 1995 Gulf of Aqaba
M7.2 event some 200 km away.

Hydraulic diffusivity around faults, as obtained from various seismological observations, is
independent of earthquake hypocentral depth and estimated to be on the order of 5.0
m2/s, termed as “seismogenic diffusivity” (e.g. Talwani and Acree, 1985; Hua et al.,
2013; Talwani, 1997; 2007). This suggests that the flow through faults is relatively
independent of the rock type (see Ingebritsen and Manning, 2010, and references
therein). Therefore, the diffusivity of faulted rock in our study is best represented by the
typical value of high-porosity Boise sandstone, 4.0 m2/s (Wang, 2000), as used for our
calculations.

 Using this diffusivity, we calculate the diffusion time scale, that indicates the time of
arrival of the excess pore pressure from the lake's bed to hypocentral depths over the
fault, for an average hypocentral depth underneath the Dead Sea fault system, z ≅ 20 km
(Aldersons et al., 2003; Godey et al., 2006; Shamir, 2006). This time scale is ~3yr,
according to the characteristic time scale definition (e.g. Kirby, 2010; Wang, 2000). For
more details see Belferman et all., 2018, Eq.3 and explanation below.

This time scale is negligible compared to the typical recurrence intervals of decades and
longer of moderate-to-large earthquakes (M > 5.5) in the Dead Sea area during the
studied period (see Tables A1, A2, and text in Appendix chapter in the current ms). It is
also insignificant compared to the minimal temporal uncertainty in the lake level curve,
nominally taken as 10 years in our simulations.

Regarding the Artesian aquifers around Ein Feshkha - these are very local, minimal (two
out of numerous boreholes), shallow, and ephemeral (Swaed et al., Geological Survey
Report: GSI-10-2014). Their relationships to faults are poorly established, as is the
historical activity of the nearby fault (Sharon, et al., 2020). More relevant are the thermal
waters, ubiquitous in the basin. These require connectivity within the top kilometers of the
section.

- The reviewer notes that even shallow boreholes at the Dead Sea are over-pressurized.
Following this, he rules out vanishing of the normal vertical effective stress.

Response:

Our response concerns two points, mechanical and hydrological. The manuscript explicitly
treats the effect of water level change relative to its minimal level (415 m below mean sea
level - bmsl) over the period studied (pp. 8, rows 157-160). The normal stress change
generated by such water level change is superimposed on the ambient regional tectonic
stress field (please see pp.6 rows 120-127). First of all, we do not claim that normal
vertical stress is zero. Moreover, being under the influence of gravity, the vertical stress
depends on the hypocentral depth. Our model is based on the water level change effect



being only on horizontal components of the normal effective stress (as was shown
previously for the reservoir-induced seismicity by Simpson 1976, and then for large-scale
surface water level fluctuations, in Belferman et al., Eq.10b and corresponding text in
p.393). Simpson (1976) established that in all faulting environments, the vertical stress
increase from water loading is eventually canceled out by increased pore pressure and the
final, post-diffusion stage (as explained above), is one in which the vertical stress returns
to its initial value. Secondly, assuming that the reviewer is referring to Ein Feshkha
boreholes, as we noted above, their relationships with faults are poorly established, as is
the historical activity of the nearby fault (Sharon, et al., 2020).

On the hydrological aspect, we expand our response above for artesian waters around Ein-
Feshkha. The shallow artesian aquifers mentioned by the reviewer are of the type
described by Mazor et al. (1995) for the Dead Sea rift. These are isolated and local
aquifers, trapped in the fine sediments. In the Dead Sea area, such aquifers occasionally
seep, as reported by sinkhole studies (e.g. Al-Halbouni et al., 2017). The fluids spewed
out are described as “sediment-laden”, and we interpret this to indicate suspension of fine-
grain material from the shallow hydrologic system. These local effects do not necessarily
represent the deeper aquifers that might be connected to the surface via fault zones as
described above. Earlier descriptions of artesian water in drill holes (Shiftan, 1958;
Bentor, 1961) also tap local aquifers that do not interact with active faults (at least during
the last two millennia).

 

Comment 3:

- The reviewer doubts the assumption that the pore pressure throughout the Dead Sea
Basin at any depth responds elastically to changes in the lake level. According to the
reviewer, since the basin is mostly made of clay, having plastic properties, changing the
water level by 25 meters will not affect the depth of 2-3 km.

Response:

With regard to the composition of the Dead Sea deposits, it was shown that clay is a
minor component of the Dead Sea Basin (e.g. Frydman et al., 2008; Herut et al., 1997;
Haliva-Cohen et al., 2012). Frydman et al., (2008) measured geotechnical properties and
found vanishing cohesion, as opposed to any lithology dominated by clay minerals. They
stated that the particle size is clay-size but the mineralogy is not. Herut et al., (1997) and
Haliva-Cohen et al. (2012) characterized the mineralogies and (like others) found quartz
and carbonates to be the leading detrital minerals.

 

In summary, the reviewer seems to have misinterpreted some key points in our work. In
our revision, we endeavor to better present our assumptions and results to avoid
confusion. With the present knowledge of the hydrological and lithological properties of
the Dead Sea Basin, as documented by current literature as referenced, our assumptions
and conclusions remain intact.
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