Reply on RC1
Anis Younes et al.

RC1: 'Comment on hess-2022-153', Anonymous Referee #1, 07 Jul 2022 reply

This paper deals with 2D numerical simulations for a coupled system arising in flow and transport in heterogeneous media. The mathematical model under consideration is the flow and transport in variably saturated porous media using Richard’s equation. A numerical scheme is developed for the discretization of this system by combining a mixed finite element method and a new upwind scheme for the convective term. 2D numerical results are presented to see the performance of the scheme for two tests for numerical simulation of contaminant transport into a variably saturated porous medium. The obtained results are satisfactory.

The subject is of interest and of current events. The authors made an interesting contribution for a difficult problem. The paper is well written and the results are of current interest. I deeply recommend the publication of this article.

Answer: We thank the Reviewer for his/her positive appraisal of our work. As detailed below, all comments are accounted for in the new revision.

The authors should clarify the following points:
- '{ }' notation should be defined to avoid confusion.

Answer: The symbol designates the contribution from the adjacent element. This has been specified in the revised version.

- The time discretization, the strategy used for the choice of the time step, the resolution of the nonlinear system and the linear systems should be specified.

Answer: Done in the revised manuscript.

- To ensure reproducibility of the results of the two tests presented, all necessary data including discretization and solvers etc. should be specified.

Answer: We agree and add all data in the revised version.
- It would also be interesting to give information about the environment in which the simulations were performed and the CPU times for each simulation.

Answer: We agree and add information about the environment for the simulations and CPU times.

- Can you comment on the extension of this approach to the 3D problem?

Answer: The scheme can be seen as a combination of the upwind edge/face centred Finite Volume (FV) method with the lumped formulation of the hybrid MFE method and, as such, it can be easily extended to 3D problems.