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Sci. Discuss., https://doi.org/10.5194/hess-2021-518-AC2, 2022

The paper contributes a global analysis about the value of long-term forecast for
hydropower reservoirs. Specifically, the authors contrast the performance of three
alternative operating schemes, basic control rules, perfect forecast-informed, and realistic
forecast-informed. The latter use forecast information generated with a statistical
prediction model based on four large-scale climate drivers along with local drivers (inflow
and soil moisture). Results obtained for 735 hydropower reservoirs show that most dams
could benefit from perfect forecasts, with these gains that strongly depend on dam
characteristics; only a small number of dams however attains a performance improvement
when realistic forecasts are used. The topic of the paper is absolutely timely and
important, and fits nicely within HESS scope. The numerical analysis is robust and well
designed, and the manuscript is clearly written. Overall, I think the paper could be a
strong contribution to the ongoing debate about the relationship between forecast skill and
value. Below I'm suggesting a few points to further improve the paper before accepting it
for publication.

Response: We thank the reviewer for the positive comments and further critical comments
that we believe have enhanced the overall quality of the manuscript.

1) the description of the dam inflow prediction model in section 3.1 is not totally clear:

1a. I did not understand is the determination of the optimal set of lead-months at line
155. Does this mean that, for each station/HP reservoir, you constructed 7 forecasts (i.e.
M1 to M7) and then selected the best lead-time as the one characterized by the minimum
MSE? If this interpretation is correct, how can you then run a Model Predictive Control with
a 7-month prediction horizon in case the best lead-time is shorter than 7? Moreover, since
forecast accuracy generally decreases with lead-time, how likely will be then selecting a
lead-time longer than one month?

Response: We apologize for the misunderstanding. We constructed 7 forecast models
(MP1 to MP7) for each dam, and the lead-month here refers to a lag-time of each
predictor. For example, after we select four (statistically significant) predictors from lag-
correlations, we choose an optimal combination of four lag-times of the predictors based
on the minimum mean squared error. This applies to all 7 models independently and does
not affect the prediction horizon. For clarifying this, Lines 153-156 will be changed to:



"To select the optimal lag-times of the predictors, we apply a leave-one-out cross-
validation (LOOCV) scheme. Specifically, all combinations of lag-times of the predictors
are cross-validated; then, the optimal set of lag-times is determined based on the
minimum mean squared error (MSE)."

Regarding the forecast skill over lead-time, we found that the highest Kling-Gupta
efficiency (KGE) appears in 68% of MP1, 5% of MP4, and 2% MP7 models. This is
illustrated in Figure 3 and Figure 2S and explained in Lines 312-315.

1b. at line 142 the authors mention the generation of streamflow forecast for 1,200
stations, but the HP reservoirs are 735. why are you generating a higher number of
forecasts wrt the reservoirs? moreover, is it correct to say you built 1,200 independent
forecast models, one for each station, right?

Response: We apologize for the misunderstanding. The term “1,200 stations” refers to the
prior study (Lee et al., 2018). Also, we built 7 independent MP models for each dam. To
clarifying that, Lines 141-146 will be changed to:

“Our long-range inflow prediction model uses Principal Component Regression (PCR) and
includes four lagged large-scale climate drivers, snowfall, and prior inflow and soil
moisture conditions to predict future inflows at 735 dams. This approach is readily
implemented globally and has demonstrated fair (realistic) predictive skill at 1,200
streamflow stations (Lee et al., 2018). While Lee et al. (2018) predict seasonal (3-month)
streamflow averages, here we develop independent monthly prediction (MP) models for
the subsequent seven calendar months. For example, forecasts issued at the end of
February include monthly inflows from March (MP1) to September (MP7).”

1c. at line 138 you say that state-of-the-art physically-based forecasts fall short on lead-
times up to 7 months, but actually these lead-times are covered by existing products such
as ECMWF seasonal forecasts available on the Copernicus Data Store. I would thus
recommend to better contextualize this point.

Response: This is a point that was also raised by reviewer #1. We agree with this
comment and thus plan to modify Lines 136-141 as follows. 

“Two broad alternative approaches for seasonal streamflow forecast development include
physically-based models, such as GloFAS (a global-scale forecasting system; Emerton et
al. (2018); Harrigan et al. (2020)), or statistical prediction models that leverage the
relationship between large-scale climate drivers and local hydro-meteorological processes
(Block, 2011; Gelati et al., 2014; Giuliani et al., 2019). Here, we select the second
approach for two reasons. First, the prediction horizon of most currently openly available
global reforecasts (a few days to 3-4 months) falls short of our preferred lead times up to
seven months, needed to test the potential of realistic forecasts for a broad spectrum of
reservoirs—including those characterized by slow storage dynamics. Second, re-forecasts
issued by global-scale forecasting systems are only available for a relatively-short hindcast
period (typically two decades; Harrigan et al. (2020)), whereas the time series of globally-
available hydro-climatological data are significantly longer. It should be noted that these
two statements may change in the near future as the boundaries of global-scale
forecasting systems keep getting extended (see Section 5.2). For example, there already
exist global re-forecasts from physically-based models with a prediction horizon of seven
months and hindcast periods of about 30 years (https://hypeweb.smhi.se/explore-
water/forecasts/seasonal-forecasts-global/).”

2) the labeling of dams in success/failure (section 3.3.1) based on the comparison of IPF
against the average IPF raises the following question: while the definition of IPF implies



that forecast-informed operation is beneficial when IPF>0, I don't understand why a
failure (i.e. IPF < mean(IPF)) implies that basic control rules and perfect forecast-
informed operations generate similar amounts of hydropower (lines 251-252). According
to this condition, I guess a dam can be classified as failure even if IPF > 0, right?

Response: We agree that this statement is confusing, since you rightly pointed out that a
dam can be classified as ‘failure’ when its IPF value is positive. We thus plan to change the
term from “success/failure” to “case/non-case” and to remove Lines 251-252 to avoid the
confusion.

3) while I fully trust the statistical forecast model used by the author, I think the paper
could benefit from some benchmarking of the resulting forecast skill against existing,
physically-based forecast products. this is likely not necessary for all the models, but it
could be a useful, complementary information for some representative cases, possibly
selected across different climate regions.

Response: We agree with the reviewer’s point on a comparison of forecast skill with
physically-based forecast products. However, there are two challenges that may hinder
the comparison: 1) At the majority of dams, both our statistical model and physically-
based prediction methods (or products) may predict different "simulated" streamflows
rather than the actual "observed" streamflows. For instance, we used streamflow data
predicted by the WaterGAP model. In other words, the result of such comparison may be
affected by the different characteristics of streamflow simulations (e.g., forcing data). 2)
The outcome of such analysis may vary significantly depending on the composition of the
subset of skilled or unskilled regions. Other minor issues include obtaining data for the
exact grids of dam locations, supporting finer spatial resolution for headwater dams, and
forecasting the same time period with the same lead-time.

Because of these reasons, we believe a qualitative comparison may be the best choice. To
this purpose, we retrieved the performance of the Global Flood Awareness System
(GloFAS), one of the most advanced physically-based streamflow forecasting systems. The
figure below shows the Kling–Gupta efficiency skill score (KGESS) for GloFAS-ERA5 river
discharge reanalysis against 1801 observation stations. While KGESS values are higher
than the initial KGE values (Harrigan et al., 2020), the KGE scores generated in our study
are comparable to or slightly higher than GloFAS scores. Even though the GloFAS's KGESS
is calculated using observed streamflow, similar patterns of forecast skills can be found in
our statistical forecasts, such as relatively lower forecast skills in central southern USA,
southern South America, and southern East Africa, and relatively higher forecast skills in
northwest North America, central South America, Europe, and South Asia.



Figure 2.1. Modified Kling–Gupta efficiency skill score (KGESS) for GloFAS-ERA5 river
discharge reanalysis against 1801 observation stations. Optimum value of KGESS is 1.
Blue (red) dots show catchments with positive (negative) skill (Harrigan et al., 2020).

Figure 2.2. KGE scores of 1 month lead (MP1) inflow forecasts developed in our study. The
original figure is Figure 3 in the manuscript.

4) the results show how the overall value of forecast information for hydropower
production is (unfortunately) relatively small. Did the author consider how much is the
potential influence of the experimental settings, particularly in terms of (A) informing the
operation with monthly inflow forecasts and (B) assuming the reservoirs are operated to
maximize total (or average) hydropower production. About (A), the work by Bertoni et al.
2021 shows how some reservoirs could benefit more from predicting the inflow peak over
a given horizon, rather than the average inflow, as this information is useful in
hydropower operations to avoid spilling water. About (B), I was wondering if in this
context the maximization of the firm energy could benefit more than the maximization of
total production as it is more related to extreme conditions.

Response: Yes, these are two points that we considered when conceptualizing the study
and setting up the experiments. However, we preferred to proceed with the current setup
because of a few reasons. Starting with point (A), the nature and intent of a global study
require us to create a realistic setup for all reservoirs of our study site. In this regard, it is
true that some reservoirs could benefit more from predicting the inflow peak (instead of
the total / average inflow volume), but investigating such aspect would result in a
redesign of the study, which should bank on different forecast models and different
analyses of how skill and dam design specifications result in forecast value. In other
words, we preferred to keep a setup that is likely to reflect what the majority of dams
would benefit from. As for point (B), the rationale is similar: we opted for a setup that is
likely to reflect the operational objective characterizing most reservoirs. Such choice is
corroborated by the validation reported in Turner et al. (2017), where we show that
maximizing total production leads to an accurate simulation of annual hydropower
production. That said, we agree with the reviewer that both point (A) and (B) are relevant
to our study, so we will expand our reasoning in Section 5.2.

MINOR:
- in eq. 2c, the mass balance equation includes the evaporation losses. where are these
data coming from?

Response: Evaporation is calculated by multiplying the surface area of a reservoir (at each
time period) by the potential evaporation. Time series of potential evaporation from 1958



to 2000 are obtained from the Water and Global Change (WATCH) 20th century model
output generated using the WaterGAP model (i.e., the same source as our time series for
the inflow into each reservoir).
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