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Summary

The manuscript by Lee et al. explores the relationship between forecast skill and value in
the case of the management of hydropower dams. The authors use dam characteristics
and forecast skill to identify categories of dams that (1) show potential for improvement
or not over climatology-based operating rules, and (2) show improvement or not based on
realistic forecasts. A climate classification is further used to “regionalize” the added value
of long-term forecasts for the hydropower sector and identify regions where
improvements of currently low quality forecasts would translate into added value for dam
management.

The paper is of very high quality, is well referenced, well written and scientifically sound.
It will be undeniably valuable for the forecasting community, but also has potential to
reach hydropower production managers. Along with the manuscript come supplemental
materials that further detail the methodology and the results, as well as a dataset and an
R script that allow readers to access the datasets for each dam.

For these reasons, I strongly recommend this manuscript for publication. Hereafter, I list
some questions to the authors, some recommendations for improving explanations, and
mostly minor points.

Response: We thank the reviewer for the positive comments and further critical comments
that we believe will enhance the overall quality of the manuscript.

General comments

Sections 2.1 and 4.4: You decided to use the Köppen-Geiger climate classification. Since
you are working hydropower and inflows which are influenced not only by climate patterns
but also hydrological ones, a classification based on hydro-climate characteristics and not
only climate characteristics would seem more relevant for the goal you are trying to
achieve. Please consider using the hydro-climate classification proposed by Knoben et al.
(2018).

Knoben, W. J. M., Woods, R. A., and Freer, J. E.: A Quantitative Hydrological Climate
Classification Evaluated With Independent Streamflow Data, Water Resources Research,
54, 5088–5109,https://doi.org/10.1029/2018WR022913, 2018.



Response: Thanks for suggesting the HydroIogical Climate Classification (HCC) (Knoben et
al., 2018). We agree with the suggestion, so we have investigated it and found the
following two points. First, the HCC is derived from climate variables, such as
precipitation, temperature, and potential evapotranspiration (CRU TS v3.23), and then is
evaluated with independent streamflow data. Therefore, the HCC could  still be seen as 
“climate-based” classification (although Knoben et al. (2018) showed that the HCC better
represents streamflow characteristics in terms of grouping catchments). Second, the HCC
is not a categorized classification like the Köppen-Geiger climate (KGC), but rather a set of
three dimensional numerical climate indices, including annual aridity, aridity seasonality,
and precipitation-as-snow. As a result, categorizing dams according to their hydroclimatic
characteristics is not straightforward.

Although it is beyond the scope of our original goal--which is classifying forecast accuracy
over climate zones--we analyzed the relationships between HCC indices and forecast skills
of 735 dams (see the figure below). Here, we used averaged HCC values in the grids
upstream of each dam. Figure 1.1 (reported below) illustrates forecast skills of 735 dams
at the given HCC values. Some interesting patterns can be identified, such as dams in the
snowing regions (snow ≥ 0.2) tend to have good forecasts with higher seasonality
(seasonality ≥ 0.4) (panel b) or less aridity (aridity < 0.4) (panel c). We believe such
interpretation can contribute to characterize dams’ forecast skills at the given hydrological
and climate conditions. However, we plan to include this analysis in the supplementary
information according to the aforementioned two points.

Figure 1.1. Scatter plots of HCC indices (Knoben et al., 2018) of 735 dams: (a)
seasonality and aridity, (b) snow and seasonality, and (c) aridity and snow. Blue up-
pointing (red down-pointing) triangles represent dams with good (poor) forecast skill
based on XMdAPE cuf-off value.

Section 3.1, Figure 1: It is not clear to me why the authors allow future inflows (t+1, t+2,
...t+7) to be predicted based on future climate indicators (1-8 months ahead). In a true
forecasting setting, the ENSO, PDO, NAO and AMO indices for the 1-8 months ahead
would not be available, only forecasts of these indices would. Some clarifications would be
needed on this aspect. For instance, the authors could re-use the very clear notation t,
t+1, …, t+8 to define which time steps they use in terms of climate teleconnection indices
with respect to the forecast month t.

Response: We apologize for the misunderstanding. We used historical (t-8 to t-1) climate
indices (ENSO, PDO, NAO and AMO.) For clarifying this, we will change Lines 148-150:
“Then, we estimate the lag-correlations between future monthly inflows over the next 7
months (t+1 to t+7) and historical climate indices (t-1 to t-8), snowfall (t to t-8), and
inflow and soil moisture in current month (t).” We will also update Figure 1.

Section 3.3.2: Even though the authors argue that MdAPE has a higher correlation and
that it provides a value at each time step, KGE, and in particular its components, may



have given insights into the forecast characteristics (correct timing, volumes, variations)
that influence value. This information would be extremely valuable to guide further model
and forecast developments for the hydropower sector, in the same way your investigation
of dam characteristics informs dam managers of potential forecast value. I wonder
whether this would be something to explore also to address the limitation you note in the
Results section L.341 “For dams with poor IDF and high KGE, two features are
noteworthy: first, KGE may not fully capture the relationship between forecast skill and
value”.

Response: Thanks for pointing this out. We agree that KGE and its components may
provide meaningful characteristics of forecast, hence we looked into the correlation
between these forecast characteristics and the performance metric I (Table 1.1). The
correlation drops with longer lead-times, which is expected, suggesting that better
prediction for immediate months tends to lead to higher forecast value. However, this
trend is not observed for the bias ratio (beta), which suggests that accurate prediction in
inflow volumes for all seven future months contributes to higher forecast value. Yet, the
correlation values here are still lower compared to other indicators of forecast skill
presented in Table S4 (e.g., correlation between I and MdAPE is -0.4). We think including
these results in the supplemental material may therefore be the best option.

Table 1.1. Correlation between performance metric I and forecast skill for the 269 dams
that are classified as success cases. Forecast skill is represented by KGE and its three
components, r (correlation), beta (bias ratio of mean inflow), and gamma (variability
ratio). The columns correspond to the prediction model with 1 to 7 months lead-time. 

Forecasts with horizons up to 7 months are generally probabilistic to account for
uncertainties at such long lead times. The authors should discuss the role of uncertainties
in their study design, i.e. how realistic it is to consider the value of deterministic long-
range forecasts depending on the current state of hydro-climate long-range forecasts, but
also on the capacity for hydropower dam managers (whose actions are hypothesized in
this study) to inform their decisions based on probabilistic information.

Response: Thanks for pointing this out. We agree this is a point worth discussing. In
particular, we plan to do so at Lines 464-465. The text reported below provides an
anticipation of the discussion we plan to include.

“Finally, investigation of alternative forecast approaches may be warranted. The adoption
of a statistical prediction model is motivated by the availability of relatively long hindcast
periods and the need for long prediction horizons (Section 3.1). Particularly, a probabilistic
forecast, which is typically based on a statistical model with empirical distributions or
ensemble dynamical forecasts, could be used in place of our deterministic forecast to
reflect a more realistic dam operation, such as decreased dam efficiency over a longer
lead-time due to increased forecast uncertainty. Additionally, depending on the reservoir
specifications, probabilistic forecasting offers a greater potential for improving dam
operation than deterministic forecasting (Zhao et al., 2011). Thus, incorporating
probabilistic forecasting into the design of our study will allow for a more accurate
quantification of the realistic forecast value and the impact of prediction uncertainty in



relation to reservoir characteristics.”

Specific comments

L.132-135 There is a range of models that fall between statistical prediction models and
physically-based model. For instance, conceptual models do not fit in these two broad
categories. I invite the authors to revise this statement.

Response: We agree with this point. For clarifying that, Lines 132-135 will be changed to:

“Seasonal streamflow forecasting approaches in large-scale analysis include physically-
based (mechanistic) models, such as GloFAS (a global-scale forecasting system; Emerton
et al. (2018); Harrigan et al. (2020)), empirical or statistical (data-based) models that
leverage the relationship between large-scale climate drivers and local hydro-
meteorological processes (Block, 2011; Gelati et al., 2014; Giuliani et al., 2019), and
conceptual (parametric) models that integrate hydrological processes at the catchment
scale (Lindström et al., 2010; Devia et al., 2015).”

L.137-140 The arguments for choosing a statistical model rather than a physically-based
one seem too general. In fact, the statement “the prediction horizon of most physically-
based approaches (a few days to 3-4 months) falls short of our preferred lead times up to
seven months” only holds when considering currently openly available global reforecasts,
and not reforecasts from physically-based (or rainfall-runoff) models in general. There
already exists, for instance, global reforecasts up to 7 months ahead and with hindcast
periods for at least 30 years (https://hypeweb.smhi.se/explore-water/forecasts/seasonal-
forecasts-global/). As the authors rightfully mention in the section on opportunities,
“global-scale forecasting systems are gaining momentum”, and therefore this part should
be rewritten to highlight the impermanence of the statements.

Response: We agree with this suggestion. To reflect it in the manuscript, we plan to
update Lines 136-141 as follows:

“Two broad alternative approaches for seasonal streamflow forecast development include
physically-based models, such as GloFAS (a global-scale forecasting system; Emerton et
al. (2018); Harrigan et al. (2020)), or statistical prediction models that leverage the
relationship between large-scale climate drivers and local hydro-meteorological processes
(Block, 2011; Gelati et al., 2014; Giuliani et al., 2019). Here, we select the second
approach for two reasons. First, the prediction horizon of most currently openly available
global reforecasts (a few days to 3-4 months) falls short of our preferred lead times up to
seven months, needed to test the potential of realistic forecasts for a broad spectrum of
reservoirs—including those characterized by slow storage dynamics. Second, re-forecasts
issued by global-scale forecasting systems are only available for a relatively-short hindcast
period (typically two decades; Harrigan et al. (2020)), whereas the time series of globally-
available hydro-climatological data are significantly longer. It should be noted that these
two statements may change in the near future as the boundaries of global-scale
forecasting systems keep getting extended (see Section 5.2). For example, there already
exists global re-forecasts from physically-based models with a prediction horizon of seven
months and hindcast periods of about 30 years (https://hypeweb.smhi.se/explore-
water/forecasts/seasonal-forecasts-global/).”

L.141 “Our long-range inflow prediction model uses…”

L.145 “For example, forecasts issued…”



Response: Thanks for spotting these two typos. We will correct them.

L.174 Isn’t it the goal of the dam inflow prediction model to feed the reservoir model? If
so, isn’t Qt not only retrieved from WaterGAP but also from the proposed statistical dam
inflow model?

Response: At month t, the prediction model gives estimates of Qt to Qt+6, which
consequently determine the release sequence Rt to Rt+6 (in Eq. 4). Then, only the
decision Rt is implemented. When simulating the reservoir dynamics, the observed inflow
Qt retrieved from WaterGAP is used.

Section 3.2.1 Is there any need for initialization of this reservoir model, and if so, how do
you handle this aspect? e.g. which initial values do you use for instance for the reservoir
storage?

Response: All reservoirs begin at full storage at the start of the simulation period (i.e.,
1958). We will clarify this point in the revised manuscript.

L.227 ”… may influence ...”
L.234 “It is reasonable to hypothesize that the value…”

Response: Thanks for spotting these typos. We will correct them.

L.251-253 “Note that failure implies that the control rules and perfect forecast-informed
operations generate a similar amount of hydropower, meaning that information on storage
and previous-month inflow are sufficient for near-optimal release decisions.” Wouldn’t that
correspond to an IPF value of 0 rather than to the mean IPF? If this statement is based on
the mean IPF value, the reader does not have this information yet, and this sentence is
confusing.

Response: We agree that this statement is confusing, since ‘failure’ in this case actually
means that the reservoir has IPF value < mean IPF which could be (and in most cases, is)
greater than 0. We thus plan to change the term from “success/failure” to “case/non-case”
and remove lines 251-252 to avoid the confusion. The text will be thus changed as
follows: “First, for each dam, we label it as case (also referred to as success) if it has the
desired property of a IPF value larger than the mean value of IPF across all dams.
Otherwise, the dam is labeled as non-case.”

L.320-321 “Considering the superior performance of the MP1 model, the forecast skill of
MP1 only is retained to represent the overall forecast skill in the following analyses.” Since
the optimisation uses all forecast horizons, the speed with which skill decreases with the
forecast horizon may play a role in the optimization and could have been considered as
well.

Response: Thank you for raising this point. It is indeed true that the speed with which
forecast skill decreases may play a role. To investigate this, we first fit a linear regression
between KGE and prediction lead time for each of the 269 dams classified as success
cases. We then use the slope of the regression to represent the speed with which forecast
skill decreases (i.e., a highly negative slope means forecast skill drops quickly with longer
lead-times). We then plot the performance metric I against the slope (Figure 1.2). There
is no clear trend of correlation between the speed with which forecast skill decreases and
forecast value. Given this result, we believe that such analysis should be reported in the
supplemental material, but not in the main manuscript.



Figure 1.2. Scatter plot of performance metric I and slope of KGE against forecast lead
time for the 269 dams classified as success cases. The blue line represents the local
polynomial regression fitting performed on the data points (i.e. fit at point x is done using
points in the neighborhood of point x).

L.327-329 “Small negative values of IPF are likely a result of the discretization needed by
dynamic programming to optimize the release sequence (eq. (4)), hence allowing control
rules to outperform perfect forecast-informed operations.” Could you please further
explain what you mean to help understand the counter-intuitive negative IPF values?

Response: Release decisions are discretized into 20 levels while storage is discretized into
500 levels. Hence, when storage level falls between 2 discrete levels, the closer level is
selected and the optimum release decision for that discrete level is implemented. This
decision may hence be suboptimal sometimes, giving rise to the negative IPF values,
which are nevertheless small in absolute terms and do not affect the interpretation of our
results. We will clarify this point in the revised version of the manuscript.

L355-357 “This is attributed to the weekly operations, suggesting that more frequent
release decisions may reduce forecast value, since the benchmark operating rules have
more opportunities to adjust release decisions.” Isn’t it the case for all the dams below the
horizontal line? Why should these ones (the failing ones) behave differently?

Response: Our original intention was to make a comparison between weekly operations
and monthly operations. For all dams below the horizontal line, weekly operations reduce
forecast value as shown in the figure below. We did not mean to make a comparison
between the failing dams and the successful ones below the horizontal line. We realize
that this statement can be misleading, hence we will revise it to clarify our point: 



“This is because weekly operations decrease IPF for some of these dams to below the
mean IPF, turning them from cases (if operated on a monthly basis) into non-cases. This
suggests that more frequent release decisions may reduce forecast value, since the
benchmark operating rules have more opportunities to adjust release decisions.”

Figure 1.3. Probability of success estimated using logistic regression when all dams adopt
monthly operations (left) and when smaller dams (below the dashed line) adopt weekly
operations (right, same figure as in Figure 5). Weekly operations tend to reduce forecast
value as shown by the smaller blue circles and greater number of non-cases (triangles) in
the right figure.

L.446 “… a number of assumptions that must be properly contextualized.”

Response: Thanks for spotting this.

Figure 2 It would be more correct to change the caption to “Percentage of dams whose
inflow is significantly correlated with…” since a dam in itself is not correlated to anything.

Response: We will revise the sentence as the reviewer suggested.

Figures 3 and S2 The titles for the color scales in the second and third lines of this figure
are confusing. If my understanding is correct, I would suggest changing titles in the first
column to “Change in number of predicted months”, and in the second column “Change in
KGE”, with “(b) MP4-MP1” and “(c) MP7-MP1” on the left-hand side.

Response: Thanks for your suggestion. We will modify both figures as suggested (please
refer to the figures reported below).

Figure 5 “red triangles represent failures”
Figure 6 “meaning that the performance of realistic forecasts is worse than the one
attained by control rules”

Response: Thanks for spotting these typos. We will correct them.
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