Reply on EC1
Ravi Kumar Meena et al.

Author comment on "A contribution to rainfall simulator design – a concept of moving storm automation" by Ravi Kumar Meena et al., Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-502-AC1, 2022

Reply to Editor

General comments

- The paper discusses the development and preliminary testing of a pressurised rainfall simulator. The simulator consists of an automated nozzle control system coupled to a pressure regulator mechanism, allowing it to automatically control rainfall intensity and simulate storm movement. The preliminary tests were carried out with a soil flume. I would like to congratulate the authors for this very interesting manuscript, which is a step further in rainfall simulation. However, there are some flaws – in my opinion – that could/should be addressed for the sake of easiness of reading and scientific soundness. Figures and tables, however, are clear to understand and useful, as they are a key-element to understand the authors’ point-of-view. There are some issues regarding scientific soundness or, at least, lack of clarity. Some of these issues are referred to below in the “specific comments”.

Reply: Authors are thankful to the editor for providing very insightful comments and suggestions. We have incorporated all the specific and technical comments in our revised manuscript.

- Referred literature is relevant but it lacks recently published information on rainfall simulators development. Some citations seem to be casuistic, and I’ve only noticed one reference (de Lima and Singh, 2003) to be strongly discussed/compared with this paper's findings. Moreover, there are some flaws in the references list.

Reply: We have added some recent references (not specific to moving storm rainfall simulation) in introduction (second para, second last line) and in the result and discussion section (first para while discussing uniformity coefficient).

From results and discussion section:

"The lower rainfall (15 mm to 22 mm) amount was recorded at the plot edges. However, the overall 180 UC was found to be 84.2 %. de Lima and Singh (2003) also conducted their rainfall simulator experiment with an average UC of 88 %."
Similarly, Macedo et al. (2021), and Salem and Meselhy (2021) conducted rainfall simulation experiments for studying soil erosion at a UC of 75 %, and 89-94 %, respectively. Further, Mendes et al. (2021) also carried out simulation tests for studying geotechnical and hydrological phenomena with a UC of 75 %.”

- Apart from research, rainfall simulators can be useful tools for visualisation and pedagogical purposes. Moreover, this paper presents an important advance in rainfall simulation. Two different parts can be identified in the paper: 1) the description of the device itself (construction of rainfall simulator, electronics, coding, operational control, ...), and the preliminary tests conducted (use of a soil flume, rainfall intensity uniformity assessment, analysis of surface runoff hydrographs, ...). My major criticism to the paper is that I find these two parts to be someway confused along the text, i.e., despite the quality of the English being very good I did not like the way the paper is organised.

Reply: Thank you for highlighting the major scientific focus of our manuscript. We have changed the flow of our manuscript (moving appendix to main text). We hope that would be easy for readers to get the essence of the manuscript.

General Comments

Q1 – A soil flume was used, with the capability to gauge surface flow, sub-surface flow, and baseflow. However, only surface flow hydrographs were presented. Why? If these flows were not to be analysed and discussed, why is this detail about the soil flume presented? I would suggest, at least, to clearly state in Section 2.2 (Design of soil flume) that only the surface flow data is analysed in the paper.

Reply: Thank you for the suggestions. We have designed the soil flume with future scope for multiple studies. The main attraction of the manuscript is the design of a moving storm rainfall simulator along with the multi-functional soil flume. So, we discussed the complete design detail of the soil flume. However, in the current study, we evaluated the moving storm rainfall conditions using the developed experimental setup. We added in section 2.2 (last line of the first paragraph) about the usage of soil flume in this study.

Q2 – Why was a soil flume used? If the paper is (supposed to be) focused on the rainfall simulator, why did not the authors use a much simpler impervious surface?

Reply: Initially, we were planning to study soil erosion using the rainfall simulator but we were not able to acquire the laser precipitation monitor for measuring drop size distribution and terminal velocity (due to financial constraints). Thus, we limit the study to the general testing of a moving storm rainfall simulator.

Q3 – Why did the authors present the very interesting electronic control system(s) as appendixes? This is the main novelty of the paper! There are many papers regarding rainfall simulation. However, there are no papers regarding rainfall simulators with the capabilities and automatisation of this one.

Reply: Thank you for your suggestion. We have added these sections (section 2.3 and section 2.4) in the paper instead of appendixes.
Q4 – During the simulated rainfall experiments, which were the criteria to consider the beginning and the end of discharge?

Reply: We used the beginning of the storm simulation as the beginning of the discharge measurement, and we measured the discharge from the soil flume stopped completely.

Specific comments

[Title] “Innovatory [...]” is ambiguous... maybe something like “A contribution to [...]” could sound better.

Reply: Thank you for the suggestions.

[P.1; L.4] “Near natural rainfall conditions”. What do the authors mean by this? And how can you assure that the artificial rainfall produced by this novel rainfall simulator is similar to natural rainfall? There is no raindrop analysis (e.g., drop spectra analysis), and the only analysis of rainfall characteristics regards the rainfall intensity spatial uniformity. In my opinion, the authors cannot assure that the simulator produces “Near natural rainfall conditions”, at least by the information provided in the paper.

Reply: Thank you for your suggestion. We have used “near-natural rainfall conditions” in terms of the storm movement as most of the previously developed rainfall simulators just produce a still rainfall as we study rainfall in theory.

[P.2; L.26] Why is estimating the impact of poultry litter application on water quality of particular importance? I am not saying it is not important, but for sure I would think of other uses for a rainfall simulator first, such as soil erosion (after all, the authors used a soil flume...) or drainage/flood simulation. This is an example of what I find to be a casuistic citation, as I cannot find anything else on the paper minimally related to poultry litter application.

Reply: We removed this statement.

[P.2; L.32-33] The authors state the “Drip formers are used for small plot area, and low-intensity rainfall studies whereas pressurized nozzles are used for large scale field studies (10 to 500 m²)”. However, this pressurised rainfall simulator is to be used with plots smaller than 10 m². Can the authors comment on this?

Reply: The mentioned statement is from two old papers of Romkens and Roth, 1977 and Hall, 1970. However, in the recent papers, researchers used pressurized nozzles for the flume area of 0.9 m² to 7.5 m² (de Lima and Singh, 2003; de Lima et al., 2009; de Lima et al., 2011; Isidoro et al., 2011 and Isidoro et al., 2013). To avoid confusion, we have removed these statements from the manuscript.

References:

[P.2; L.53] It is not clear how the “efficiency evaluation” is performed.

Reply: We reworded the statement to the only “evaluation” which means evaluation of moving storm rainfall simulator using different characteristics of surface runoff hydrograph (i.e., peak discharge and time to peak).

[P.3; L.73] I do not agree with stating that “A uniform spray coverage [...], as the spatial rainfall distribution is (factually) not uniform. The CUC analysis is presented only in Section 3 (Results and discussion), and just for one rainfall intensity scenario. This is by no means enough to state that this rainfall simulator can produce uniform spray coverage... in fact, one of the major problems of pressurised rainfall simulators. The paper does not prove that this rainfall simulator can produce uniform spray coverage.

Reply: We did the uniformity test for different rainfall intensities (at multiple rainfall intensities between the range of 36 mm/h to 606 mm/h with the minimum UC of 82 % and maximum UC of 91 %). However, in the current manuscript, we only mentioned the uniformity coefficient of the intensity used for this study.

[P.4; L.81] Base flow is incorrectly used here. It should be “groundwater flow” or “deep sub-surface flow” (the latter is better). “Baseflow” is the part of streamflow that is sustained between precipitation events, and that flows to streams by delayed pathways. It has nothing to do with the flow physics detailed in this paper.

Reply: Totally agreed with your point. We have corrected the statement.

[P.4; L.103-104] Did the use of flexible hoses to supply water from the feeder tank to the nozzles resulted in difficulties to maintain a steady pressures, mainly when opening/closing the valves? I suggest looking at Isidoro and de Lima (2015) and comparing the advantages/disadvantages of this novel system regarding pressure stabilisation.

Reply: Thank you for your suggestion. We have used flexible hoses to supply water from the feeder tank to the header. In this rainfall simulator design, there continuous opening and closing of the nozzle happens to simulate a moving storm which will lead to change in system pressure. To compensate the impact of change in pressure, we used feedback system which continuously checks the
system pressure and according to the condition it maintains the bypass flow (return flow) of the system to keep the pressure constant.

[P.8; L.147-148] “However, very little runoff was generated for velocity of 6 m min\(^{-1}\)[...].” Is this true both for the upstream and downstream storm movement tested scenarios?

Reply: Yes, for both upstream and downstream directions the generated runoff was not sufficient to generate a hydrograph.

[P.13; L.231] Please explain better “A stop cock valve was used to develop a servo-operated valve due to its low operational torque requirement”.

Reply: Stop cock valves used in this study are quarter-turn valves which require very less operation force as compared to the other types of valves such as ball valve, butterfly valve, gate valve.

[P.13; L.232] Please check this. Torque unit (SI) is Nm.

Reply: Thank you for your suggestion. That was a typo error too the initially unit of torque on the specification sheet for the used servo motor was 10 kg/cm but now we converted it and changed it to 0.98 Nm (currently in section 2.3.1).

[P.14; L.250] What do the authors mean by “bypass flow”? Please detail this further.

Reply: Thank you for your suggestion. In this rainfall simulator, the header of the rainfall simulator is closed so the pressure of the simulator line is maintained by controlling the bypass flow (return flow) (we added in section 2.4.1).

Technical / typos / orthography comments

[P.2; L.52-53] I suggest using “The following parameters are considered [...]” instead of “Following scientific parameters are considered [...]”

Reply: Corrected

[P.4; Figure 2 caption] I suggest adding “(not in scale)” to this figure’s caption.

Reply: added

[P.4; L.91-92] Please check this sentence.

Reply: We have changed the statement as following: “A set of 11 nozzles were used for simulating the moving storm condition. Electrically operated flow control valves were used to control these nozzles through an Arduino Mega (AM) microcontroller board.”

[P.4; L93-94] I suggest using “Bluetooth Module (BM)” instead of “Bluetooth module (BM)”.

Reply: Corrected

[P.4; L.102] I suggest using “Pressure Regulating System (PRS)” instead of “pressure regulating system (PRS)”.

Reply: Corrected
I suggest using “Proportional-integral-derivative controller (PID controller)” for ease of understanding.

Reply: Corrected

Why are the nozzles not listed on this table?

Reply: Thank you for your suggestion. We have added that to the table.

I suggest using “soil flume” instead of “study area”.

Reply: Corrected

Appendix C is missing on the paper. However, L.226 (P.13) shows a link for the software code. Is this the code supposed to be presented in appendix C?

Reply: Thank you for pointing that out. Yes, we have already added the link of the code used in this study but due to the typo error we missed to put it as the Appendix C. That correction has been made in the manuscript.

There is an error in the citation... it should be “de Lima and Singh (2003)”.

Reply: Thank you for your suggestion. We will change that to the manuscript.

Please use “6 m” instead of “6m”.

Reply: Corrected

Is it 82.00 % ? (All other values show two decimal places).

Reply: Corrected

Please use “3 m” instead of “3m”.

Reply: Corrected

I suggest using “[...] could never contribute to generating runoff [...]” instead of “[...] could never generate runoff [...]”.

Reply: Corrected

I suggest using ×10⁻³ in the table’s last column.

Reply: Incorporated the suggestion

I suggest using “[...] and three different moving storm velocities” instead of “[...] and three different velocities”.

Reply: Corrected

I suggest using “[...] and three different moving storm velocities” instead of “[...] and three different velocities”.

Reply: Corrected
Reply: This is a typo error. There were two more typos in line L.240 and L.246 (submitted version). We removed these typos (currently in sections 2.3.2, 2.3.3 and 2.4.3).

Reply: Thank you for pointing this out. We have incorporated the suggestions.

Reply: Thank you for pointing this out. We have incorporated the suggestions.