Reply on RC1
Harris Ramli et al.

Author comment on "Influence of drop size distribution and kinetic energy in precipitation modelling for laboratory rainfall simulators" by Harris Ramli et al., Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-462-AC1, 2022

The authors wish to thank the editorial team for managing the technical review. The authors also thank the reviewers for the comments and appreciate their support in making the paper more readable and more beneficial. Attached is the response to the comments and suggestions made by the reviewer (in PDF format).

<table>
<thead>
<tr>
<th>No.</th>
<th>Comment</th>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The authors are kindly advised to revise the article as the article presented does not allow, in its current form, the readers of HESS to use the results / the rainfall simulator discussed in this work. Major revision and/or rewriting of the article is needed to clear up parts that are unclear and to add information that is currently missing.</td>
<td>They are considered in the revised manuscript.</td>
<td>The authors thank you for the comments and appreciate the support and involvement of the reviewers to improve the paper.</td>
</tr>
</tbody>
</table>
A photo of the system needs to be added.

The text mentions that every lateral contains 10 drip emitter at 0.8 meter, which would make the system 8 meters long. I'm assuming that this is 0.08m, as per the drawing in figure 1b.

The system consists of 100 nozzle drip points distributed throughout a 72 cm × 72 cm square area. Ten lateral lines connected to the mainline contain ten nozzle drips equally spaced at 8 cm. The system's effective test area is 80 cm × 80 cm.

The system seems to be 80 x 80 cm of nozzles. The text says that the flour pallet method is used to determine drop sizes. The sentences have been revised to avoid confusion with Figure 1b, as the lateral flow line spans over one metre (72cm + 39cm), with the drip spaced at an 8cm interval. Section 3.2 Drop Sizes elaborated on the method of using a flour pallet.
The author make no mention of the 'edge effects'? Did all the rain fall within the 1 square meter of the board? Of so: was it uniform?

Regarding this comment, the author added a paragraph on rainfall simulator calibration to provide a more clear view:

The rainfall simulator was calibrated in terms of rainfall intensity to achieve reproducible and consistent rainfall characteristics. Throughout the calibration and experiment, any element that may affect the changes in wind flow, such as an air conditioner or fan, is controlled to ensure that the raindrop falls vertically within the effective test area. The calibrating process was split into two parts. The first step measured the rainfall intensity and spatial rainfall distribution on the designated surface. To obtain high-resolution datasets, 100 cylindrical rainfall collectors are positioned on an area of 80 cm x 80 cm under the drip used. Each collector was weighed to determine the amount of rain collected after one hour of simulated rainfall. Based on the observations, no droplet crosses the

Thanks to the reviewer for this comment and suggestion.
cylindrical during the calibration and all land directly on the cylindrical beneath the drip. This initial calibration step ensures that each nozzle produces an equal amount of rainfall. A second step involved using a single large, plot-sized collection to determine net rainfall intensities. The volumetric method of flow measurement was utilised to calibrate the simulated real intensity. Two laboratory steel trays with top dimensions of 80cm x 80cm x 10cm and bottom dimensions of 100cm x 100cm x 8cm were used for volume control and placed beneath drip systems. The different heights of the top and bottom are merely a coincidence due to the laboratory’s available tray. The primary technical requirement is that the central collection tray (small) must fit within the dimensions of the designed test area and be tall enough to collect the intended rainfall intensity (in this work, the maximum is 80 mm/h.), whereas the secondary collection tray must be larger than the effective test area. Collector boxes were placed in a central location (in relation to the drip location) and collected
the precipitated volume at a set pressure. The volume of precipitated water was determined using a measuring cylinder. A ruler was used to measure the water level, and then the precipitation volume collected was recorded. No raindrops landed on the large bottom tray during the second calibration stage based on the observations. This demonstrates that the raindrop area's uniformity is reproducible.

5

How was the calculation from water flow to mm/hour done? Regarding this comment, the author added sentences to provide a more clear view:

The calibration result enables the flowmeter to correlate the amount of water controlled by the flowmeter to the amount of water emitted from the nozzle. Thus, the simulator delivers the desired rainfall intensity (mm/hr). Thanks to the reviewer for this comment and suggestion.
Figure 1a suggest that the 'soil' is uneven and thus that different heights are possible in this system. If this is true it needs to be made explicit. If it is not, figure 1a needs to be corrected.

The authors do not mention in their introduction what range their new simulator targets, nor for which applications it is build.

Thanks to the reviewer for this comment and suggestion. The uneven soil profiles result from another aspect of this research that is not covered in this paper. Calibration results indicated that small changes to these soil profiles do not affect the rainfall simulator's performance.

Thanks to the reviewer for this comment. The uneven soil profiles result from another aspect of this research that is not covered in this paper. Calibration results indicated that small changes to these soil profiles do not affect the rainfall simulator's performance.

The main intention of this simulator setup is to simulate targeted rainfall intensities similar to the cases of landslide occurrences in the authors country. The simulator is applied to a laboratory setup of a specific selection of slope criteria for further understanding on rainfall impact in groundwater level changes. It is beyond this manuscript context; therefore, the authors excluded the explanation of the simulator's application.
Paragraph 3 contains a mix of theory and experimental setup that is hard to disentangle. The choices made in how to conduct the experiment are mentioned in between citations to literature. I strongly recommend separating paragraph 3 in a 'theory' and a 'experimental setup' paragraph.

To check the amount of water coming out of the system the flow meter is read for different settings of the pump pressure. It is not mentioned how this experiment was conducted: for how long was the valve opened? Was the flow allowed to settled before starting the measurement? Or was it the same 1 to 4 seconds mentioned in paragraph 3.2?

To check the drop sizes generated with this system, the flour...
pallet method was used with the flow opened for 1 to 4 seconds (how much? How was this determined? Was the idea to only have a few drops? How many?)

This needs clearing up: test would be on what was done and conducted by various researchers between 1 and 4 seconds, depending on the intensity of rainfall. In our experiment, a 1.0 m x 1.0 m plate containing a 2.54 cm (1 inch) layer of uncompacted fine wheat flour was exposed to a split second of rainfall. The drops must not fall at the same point during rainfall simulation and formed corresponding to the drop size on impact. The objective is to collect a single drop of water. The flour plate was positioned 1.5 metres below the drip and covered with two layers of tray. A collection tray is used on both the top and bottom trays. The top collection tray's purpose is to capture the initial 1 to 2 seconds of rainfall when the valve is opened. This ensures that every nozzle produces a raindrop. Simultaneously with the top tray being set aside, the flour plate was exposed for a split second before being covered by the
bottom tray. The valve was immediately closed to halt the rain. Based on the observation, the raindrop pattern is within the effective test area.

The authors indicate they open and close the valve for 1 to 4 seconds. Is this how it will always be operated? Or will it be opened fully when used in practice? No changes in manuscript

Thanks to the reviewer for this comment and suggestion. As explained in comment No. 10, the statement of 1 to 4 seconds is for the flour pallet test only. During the actual rainfall simulation test, the intended volume of rainfall is applied according to the rainfall intensity and duration.

Please also note the supplement to this comment: https://hess.copernicus.org/preprints/hess-2021-462/hess-2021-462-AC1-supplement.pdf