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This paper addresses the annotation problem in machine learning with images which can
be a daunting task while, at the same time, delivering. Starting with CNNs for semantic
learning, inductive transfer learning is used with much smaller training sets to
build accurate models that “ease the process of river level estimation from river camera
images.”  Below we provide some over-arching, general notes about methodology that
could use some clarification, followed by some minor comments for consideration. 

General comments: 

Two challenges for the data selected for the study seem to be 1) the use of ground
surveys that "measure the topographic height of several landmarksâ�¯within the field-of-
view of the camera?" and 2) the fact that "the number and spread of measured
landmarksâ�¯over the camera’s field-of-view was constrained to locations that were
accessible during the ground survey". These challenges might be hard to overcome in real
world scenarios where access is not available and the measurement of the landmark
heights is a large task. Might there be alternative ways to get that information? Maybe
worth aâ�¯very short discussion.â�¯ 
 
There was one brief note about the cameras being fixed in the images used in the paper.
With a camera that is tens of meters from a scene it is common (even under the best of
conditions) to get movement of the camera relative to the objects of interest in the scene.
The reason for mentioning this is that it is relatively easy to test for camera movement.
You might have tested for camera movement and ruled it out as a source of variation. In
that case, it might be worth mentioning that in the paper. If not, it might be good to
discuss how your already very good predictions might improve if that motion were taken



into consideration by using image processing techniques to find the landmarks in the
scene and make adjustments for camera movement. 
 
A brief discussion of landmark vs. area feature analysis might add to the paper. Readers
will likely benefit from understanding how you weighed out the pros/cons of those
approaches. Did you decide to use landmarks based on the need to ease the (already
reduced) annotation task? Or did you choose it because (1) of the desire to use the “by-
pixel” output of the CNN’s without post processing, (2) it was just beyond the scope of this
analysis because you wanted to focus on the transfer learning, and/or (3) for some other
reason? Is it possible that the analysis of the classified pixels in a landmark region might
yield a better predictor than just the landmarks themselves? A good deal of effort was
directed at finding a heuristic to ignore outlier flood predictions. Ignoring outliers is a
good objective, but analysis of landmark regions could have improved the specificity and
sensitivity of your predictions (i.e., provided a more robust assessment of prediction
quality). Again, this might have been beyond the scope of performing annotation of a
large number of images with the transfer learning methodology, but more discussion
around strengths and challenges of your approach would strengthen the paper. 

 The scope of the literature review in the Introduction and Background sections is
narrow and could be expanded to better connect with the broader literature on image-
based stream gauging and/or extreme event detection/measurement literature. For
example, the idea that non-contact image-based stream gauging techniques can also be
used to flag extreme events is not mentioned. The following (and/or literature cited
within) could be integrated without excessively lengthening the paper. Here are some
examples from a quick Google Scholar search: 
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