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ID: R1_01

Referee comments: 

General comments:

This manuscript shows a case study with assimilation of real observations of satellite-
derived flooded areas and local gauge observations to keep a flood forecast model on
track. The paper is well written and the topic is relevant for HESS.

The authors use the (perturbed-observations) EnKF to update the state of a 2D hydraulic
model, coupled to a hydrologic model, which provides the inflows as input the the
hydraulic model domain. The hydrologic component and global model setup is fine from
this Referee’s point of view, and the authors have done a good effort throughout the
study.

However, after reading the manuscript, one is left with the impression that on the
assimilation approach the authors have come with a “preconceived” plan without seriously
considering standard assimilation possibilities that are already out there. It is my belief
that studies that defend alternatives methods should always consider existing approaches
for benchmarking. Otherwise, there is the risk that we are left with a bunch of alternatives
and without enough information to decide whether it is worth (or better) to try one or
another. Also, one is left with the impression that the overall results in this study could be
rather different using alternative assimilation approaches. This does not invalidate the
study at all, but it should be augmented with results from applying (assimilation)
techniques that are already on the table.

The joint assimilation of observations from  satellite and local river gauge time-series is of
clear interest in this context, and it is natural that flood forecast feeds on as many
observation types as possible. However, despite the effort put by the authors, the above
issue plus a scarcity in the section for results is, in my opinion, a missing opportunity.

Authors’ reply: We thank the Referee for the solid review that helped improving the
manuscript and better elaborate some parts of the Data Assimilation application and the
results. We better clarified the aim of the work, pointing out that the main novel part is
the joint assimilation of both traditional static sensors and satellite derived flood extent for



improving the performances of a distributed unsteady bidimensional hydraulic model. The
use of Quasi-2D hydraulic modelling is a challenge for real time DA frameworks and
injecting distributed EO data (in addiction to single point static sensor observations)
makes the challenger harder. To our knowledge, while there are a number of papers also
using 2D hydraulic modelling (see ID: R1_06 comment) this is a quite challenging and still
a much debated topic requiring further research to develop methods, procedure towards
DA that include 2D models. Moreover, we also better specified why using some novel
approaches for updating the state variables in the DA framework.

Authors’actions: In the following lines we isolated every Referee comment assigning a
specific ID with a progressive number (e.g. R1_XX) and our point-by-point reply.

 

ID: R1_02

Referee comments: 

In the introduction, it would have been also nice also to refer, somehow, to the advances
in Numerical Weather Prediction (NWP) to frame the context of the early warning systems.

Authors’ reply: We agree with the Referee’ suggestion.

Actions: We added some references on the NWP in the introduction:

“In case of medium term forecast (i.e. days/weeks ahead), rainfall and runoff
observations are not sufficient and Numerical WeatherPrediction (NWP) models are
required, especially for basins whose concentration time is limited so that emergency
measures, such as evacuation, cannot be properly applied on time (Hopson and Webster,
2010). In this regard, recent advances in NWP models in weather forecasting were
developed adopting ensemble prediction systems (EPS) (Buizza et al., 2005) as inputs of
hydrological and hydraulic models.”

And:

“DA models are used both in NWP and hydrologic-hydraulic modelling. Advances in EPS
approaches and increasing of computational power allowed to improve the accuracy of
NWP models as inputs of flood forecasting systems (Yu et al., 2016). Successful examples
of advanced EPS approaches in NWP models for flood forecasting services at large scale
are the EPS-ECMWF - from the European Centre for Medium Range Weather Forecasts-
(De Roo et al., 2003) and the COSMO-LEPS - from the Consortium for Small-Scale
Modelling – Limited-area Ensemble Prediction System (Marsigli et al., 2005). Flood models
can be updated in DA approaches by ingesting outputs of NWP models or direct rainfall-
runoff observations.”

 

ID: R1_03

Referee comments: 

It is not easy to select a starting point as best reference on assimilation in this field along
the chain of available papers, ranging from general methodological assimilation papers
(outside from hydrology) to more applied ones in this specific field of flood forecast.
Perhaps, on the assimilation of real satellite-based flood extent observations with a 2D
model stretching over a number of rivers (some main rivers plus some tributaries), and



using an upstream coupled hydrologic model for the inflow timeseries (as well as
estimating online model parameters, as this study), the authors should look back to
García-Pintado et al. (2015). From there, they could also further look into citing articles to
go forward in time towards more recent studies.

Authors’ reply: We thank the Referee for the suggestion.

Actions: In the introduction, we extended the analysis about the state of the art of the
scientific literature on Data Assimilation applications with hydraulic modelling for flood
forecasting including also García-Pintado et al. (2015)  reference. We report here an
extract of the introduction:

“To tackle these issues, in the last ten years, Earth Observation (EO) data were used to
inject water altimetry observations in DA frameworks for updating flood models, usually
adopting radar Synthetic Aperture Radar (SAR) technologies and 1D (Matgen et al., 2007;
Neal et al., 2009; Matgen et al., 2010; Giustarini et al., 2011) or 2D ( Andreadis et al.,
2007;Hostache et al.,2010; Mason et al., 2012; García-Pintado et al., 2013; Andreadis
and Schumann, 2014) hydraulic routing algorithms. One of the critical issues of the model
state updating is the persistence of the improvements of the model performances.
Regardless the DA  algorithm (e.g. Direct Insertion, PF, EnKF) the assimilation of the
model states in real and synthetic scenarios brought to more accurate predictions
immediately after the updating step, and they quickly decrease, depending on the specific
case study, few hours or even few minutes after the state updating, going back to the
same performances of the open-loop model realisation (Andreadis et al., 2007; Matgen et
al., 2010; García-Pintado et al., 2013; Andreadis and Schumann, 2014). Some of these
studies demonstrated that the updating of inflows boundaries can increase the persistence
of the errors reductions between the observations in both 1D (Matgen et al., 2010) and
2D (Andreadis et al., 2007;García-Pintado et al., 2013) hydraulic models. Other studies
investigated on the spatial weighting of remote sensing-derived water levels observations
in DA approaches. For  example  Giustarini  et  al.  (2011)  found  significant  benefits  in 
a  local  weighting  procedure  of assimilating unbiased very precise water levels
observations, while a global weighting procedure is recommended for water level
observations in ungauged basins. However, if the local weighting is combined with but
poorly spatially distributed field data , the model updating can lead to an over-correction
that could even decrease the overall model performances. In fact, the frequency of the
model corrections seems to be effective mostly during the rising limb of the flow
hydrograph, while it seems not to be significant efficient during the recession limb
(Giustarini et al., 2011; García-Pintado et al., 2013). García-Pintado et al. (2015)
proposed a novel methodology to test the performance of a global formulation, a
traditional local formulation and their own novel local formulation of the EnKF model to
improve the forecast of a 2D hydraulic model assimilating SAR derived water levels. Their
novel local formulation of the EnKF was able to remove the unphysical relationships and
spurious   correlations that characterized the global filter. The authos also proved that the
updating of the 2D hydraulic model friction and channel bathymetry seems to have second
order effect, as respect to the inflow updating, in flood inundation models applied to
gradually varied flow in large rivers. Andreadis and Schumann (2014) applied a local EnKF
for assimilating synthetic SAR derived water levels, inundation width and flood extent in a
2D hydraulic model, partitioning the Ohio River (516 km) in reaches of equal lengths. The
authors obtained similar results for reach lengths varying from 5 to 50 km. On the other
hand, SAR-derived inundation extent mapping techniques were tested to provide spatially
distributed information to support near real-time flood detection services (Martinis et al.,
2015; Pierdicca et al., 2009). There are recent examples of DA research proving the value
of assimilating satellite images for diverse purposes. In this regard, several aspects have
been investigated to assimilate flood extents observations in a flood forecasting
framework, such as the relation between the flood extent and the model state variable,
the updating of the model inflows and parameters, the impact of the typology, the timing,



the location and the frequency of the satellite-derived flood extent observations on the
performances of the DA performances. Lai et al. (2014) applied a variational data
assimilation (4D-Var) method for updating the friction (i.e.Manning the values) of a 2D
hydraulic model based on shallow water equations proposing a novel cost function able to
relatethe satellite derived flood extent to indirectly observed flood depths. Revilla-Romero
et al. (2016) proposed an EnKF approach for  updating  the  streamflow  values  and  the 
parameters  of  a  Global  rainfall-runoff  (LISFLOOD)  model  using  flood  extent
observations gathered from the Global Flood Detection System (GFDS). Hostache et al.
(2018) proposed a PF approach for updating an high resolution hydraulic model directly
using ENVISAT ASAR derived water extents for near-real time flood forecasting. The
authors analyzed improved performances of EWSs in reducing water level estimation
errors if compared to Open Loop (OL) simulations (i.e. not updating flood state variables
with observations).   Hostache et al. (2018) underlined opportunities of SAR images,
overcoming visibility issues of optical sensors due to clouds, but also stressing some
limitations of  water  altimetry  approaches.  In  particular,  the  need  of  high  resolution 
topographic  data,  challenging  pre-processing  and hydraulic modelling development
make SAR-derived DA approaches hard to replicate and to be applied at varying
scales(Mason et al., 2012; Wood et al., 2016). Dasgupta et al. (2021b) proposed a novel
Mutual Information-based likelihood function for assimilating SAR derived flood extents in
an high resolution 2D hydraulic model adopting a PF approach. Dasgupta et al.(2021a)
investigated on the timing, the positioning and the frequency of the SAR-derived flood
extents, on the performances of the PF assimilation of a 2D hydraulic model, finding that
the optimal strategy for the image acquisition depends on the river morphology and flood
wave arrival timing. Moreover, it was found that the number of observations to
significantly improve the performances of the DA model increase with the with the
narrowing of the floodplain valley.”

 

ID: R1_04

Referee comments: 

For a more general context about flood forecast considering assimilation, it is also
advisable to read the review by Grimaldi et al. (2016). Although this paper is cited here,
the manuscript indicates the authors have not actually gone through the paper details.

Authors’ reply: We agree that Grimaldi et al., (2016) provided a good starting point as
framework on the state of the art of DA modelling for flood forecasting.

Actions: According to the referee suggestions, we extended the introduction considering
Grimaldi et al. (2016)

 

ID: R1_05

Referee comments: 

Last but not least, it is surprising that despite the effort put into this study the authors do
not show any spatial graphical output (despite they use a 2D model) for diagnosis of the
assimilation. They could well show maps with, for example, assimilation increments at
specific times, covariances, etc. These kind of 2D plots are very helpful to try to
understand what is under the hood in the assimilation. This greatly eases the
understanding and evaluation of what is working well or not.



Authors’ reply: We agree with the referee concern. This suggestion represents a quite
significant improvement of the revised work. 

Actions: We added new Figures showing the distribution of the covariances for different
time steps for the 2012 flood event in case of SG and SI assimilation

 

ID: R1_06

Referee comments: 

Specific comments:

L45. Some of these studies do use a 2D hydrodynamic model. In summary:

Andreadis et al., 2007  : 2D

Matgen et al., 2007: 1D

Neal et al., 2009; 1D

Hostache et al., 2010: 2D

Matgen et al., 2010:  1D

Giustarini et al., 2011: 1D

García-Pintado et al., 2013: 2D

Mason et al., 2012: no DA but aimed to 2D

Andreadis and Schumann, 2014:  2D

What seems to indicate that the authors have actually not read these papers.

Authors’ reply: We thank the Referee for pointing out this error.

Actions: We corrected the sentence as follows: “To tackle these issues, in the last ten
years, Earth Observation (EO) data were used to inject water altimetry observation in DA
frameworks for updating flood models, usually adopting radar Synthetic Aperture Radar
(SAR) technologies and 1D (Matgen et al., 2007; Neal et al., 2009; Matgen et al., 2010;
Giustarini et al., 2011) or 2D ( Andreadis et al., 2007;Hostache et al.,2010; Mason et al.,
2012; García-Pintado et al., 2013; Andreadis and Schumann, 2014) hydraulic routing
algorithms.”

 

ID: R1_07

Referee comments: 

L57: Clarify here in which sense is the DA framework novel? Specifically, the EnKF has
now a long history.

Authors’ reply: We agree that the novelty of the proposed research is not the DA model



itself (EnKF is a consolidated approach).

Actions:  we removed the “novel” word for the DA framework and we better clarified the
novel aspects of the proposed research:

“Despite the remarkable progresses in the integration of remotely sensed observations in
DA frameworks, there are still majorchallenges that need to be faced (Grimaldi et al.,
2016). For example, there is not still in scientific literature an approach able to assimilate
heterogeneous observations from both local and distributed datasets coming from
different sources (i.e. traditionalstage gauges and remotely sensed flood extents).
Moreover, Quasi-2D and 2D hydraulic models can be sensitive to differentsimultaneous
local state updating (i.e. water level corrections at specific time steps), because
contiguous channel/floodplaincells  can  be  characterized  by  different  elevations, 
geometry  and  roughness,  therefore  instability  issues  can  rise  during  themodel
corrections. Another critical issue is that large scale flood forecasting models need to
provide timely predictions but their spatial resolution can limit the effectiveness of the
assimilation of satellite derived flood extents (Hostache et al., 2018).In this work, a DA
framework supported by heterogeneous observations coming from both local water level
observations(i.e. stage gauges)  and spatially distributed information gathered from
satellite images - is proposed and tested. This researchseeks to develop a more flexible
DA scheme that may value all available sources of observations for distributed flood
modellingupdates. The aim of this work is to mitigate flood prediction uncertainties by
combining heterogeneous data and an integrated topographic-hydrologic-hydraulic
modelling approach, while maintaining inundation forecasting robustness, scalability
andnumerical stability. In achieving this goal, novel scientific advances and technical
challenges of EO-driven DA approaches forflood prediction are investigated and in
particular: A methodology for updating the state variable from multiple local stagegauges
observations of a hydraulic model for distributed flood routing in floodplain domains; the
gathering of spatially dis-tributed water level observations by means of flood extension
processing and detection from satellite images, also adopting GIS algorithms for
overcoming the issues of the different resolutions between the ensembles of the flood
extents retrieved fromthe satellite derived images and the ones generated from the
hydraulic model simulations. “

 

ID: R1_08

Referee comments: 

L77: The regular grid and simple IO formats do not make the model more “suitable” to DA
than using an unstructured mesh or more complex (e.g. hierarchical) IO formats. This just
allows for a simpler code.

Authors’ reply: we agree with the Referee comment.

Actions:  We replaced “suitable” with “simpler”

 

ID: R1_09

Referee comments: 

L94 “assess maximum flood energy gradients”. How is this relevant? How is energy
coupled with the 2D flood model or used here? It is also unclear if the floodplain



computational domain evolves with time along with model integrations or is preset, based
on GFPLAIN.

Authors’ reply: We agree that the description of how we defined the computational
domain (that however does not evolve with time) can move the reader’s attention away
from the main purpose of the manuscript and it is not relevant to this study.

Actions:  We removed this paragraph.

 

ID: R1_10

Referee comments: 

L114: No uncertainty is taken into account in the rainfall input. It is worth to a) discuss
briefly the errors in rain gauge data [e.g. the possibility of generating quantitative
precipitation ensembles via Sequential Gaussian Simulations, etc.] and how the
uncertainty is propagated downstream in the forecasting chain, and b] some reference to
coupling with [possibly ensemble] NWPs.

Authors’ reply: We agree that we did not directly take in to account the uncertainty in
rainfall input. However, we expressed the inflow uncertainty including  all the sources of
uncertainty of the hydrologic modelling. In this revied version, we included the temporal
correlation of the inflow errors and the standard deviation of the white noise component is
derived considering  the frequency distribution of its relative flow errors (observed versus
simulated flow values) obtained by the calibration and validation of the hydrologic model.

We calibrated and validated the hydrologic model considering  four small ungauged basins
of the Tiber river basin in order to find the optimal values of the channel/hillslope flow
velocity and infiltration parameters. 

Since we directly compared the simulated and the observed streamflow values, the
standard deviation error equal to 0.28, indirectly takes in to account all the sources of
errors: from the rainfall inputs and its spatial distribution along the basin, the simplified
modelling of the flow routing, the neglected physical processes, such as the groundwater
flow, the mud and debris flow, the antecedent soil moisture conditions.

We agree that more refined methods such as the generation of quantitative precipitation
ensembles should be mentioned.

Actions:  we added the following lines: “The hydrologic model is affected by different
sources of uncertainties: the structural uncertainties, given by the simplification of the
modelled physical processes (e.g. we adopted a simplified lumped WFIUH approach,
neglecting groundwater flow,mud and debris flow), the input uncertainties (given by the
rainfall values and antecedent soil moisture conditions), and para-metric uncertainties due
to the inaccuracy of the model calibration). All of these sources of uncertainty should be
considered. For example input rainfall uncertainty from rain gauges can be estimated
considering quantitative precipitation ensembles (Clark and Slater, 2006), such as
Sequential Gaussian Simulations (Goovaerts et al., 1997; Rakovec et al., 2012a).
Precipitation ensemble generated with NWPs can than be coupled with hydrologic models
to improve flood forecasting (Jaspe ret al., 2002; Sorooshian et al., 2008). In this work
we decided adopted a simplified procedure taking in to account all the modeling
uncertainties considering the frequency distribution of the errors between the observed
and simulated flow values obtained by the calibration and validation of four small
tributaries of the Tiber river basin in past flood events. “



 

ID: R1_11

Referee comments: 

Section 2.2

L140: Satellite and river gauges give observations as water levels. It appear as more
natural to use the forward operator H to map the model state into the the observation
space.

Authors’ reply: we used the H as identity matrix to map the model state into the
observation state. See the following lines: “

For this reason, the observation transition operation H introduced in Eq. (2) is an identity
matrix, being a direct relationship between state variables and observations.”

 

 

ID: R1_12

Referee comments: 

Section 2.2.2

L155: “significant”. Please reserve the term “significant” for its statistical meaning in
manuscripts. This is just a threshold. Use simply “high”.

Authors’ reply: we agree with the referee’s suggestion

Actions:  We replaced “significant” with “high”.

 

ID: R1_13

Referee comments: 

Overall, I’m sorry to be so negative here. Why, not just use covariances for the
simultaneous assimilation of several observations. This whole section [specifically weight
the observation values based on inverse distance weight] goes against the whole spirit of
the EnKF. If the authors believe their approach is better than using covariances to control
the updating steps (as standard), they should at least put this into context to defend their
approach.

The authors should look at approaches that have been deeply studied (as localisation and
ensemble inflation), and refer to them. There is plenty of bibliography (mostly on the NWP
field) on this. It is even better if they can actually implement an EnKF with localisation
(and, possibly, inflation). Then use this as benchmark to evaluate if their approach
actually makes things better/worse/different...

Authors’ reply and actions: : We thank the Referee for the comment that helped
clarifying the reasons why we adopted our methodology (alternative to localization) that



goes against the spirit of EnKF.

In our model, we could use covariance localization considering absolute water levels (as
respect to the average sea level) or water depths (as respect to the terrain elevation)

However, river water depths can dramatically change among contiguous cells of the
hydraulic domain for example moving from a channel and a floodplain cell or because
changes of the local geometry (e.g. cross section shape). In fact, usually stage gage
measurements are located under hydraulic structures such as bridges, where the
geometry of the cross section (that can be reshaped to be adapted to the bridge
geometry) can have high differences as respect to the surrounding natural cross sections.
Therefore, the standard localization techniques could give some issues (e.g. numerical
surging or filter convergence) when updating a state variable close to the observation
location  but considerably different to it.

Therefore, following the Referee’s advice, we applied an observation localization technique
considering absolute water levels. Specifically, we implemented the localization
methodology applied by Garcia-Pintado et al., 2015, as rare case study of localization
application in a 2D hydraulic model. They adopted an Observation Localization method
applying a weight to the error covariance that is a distance metric based also on a channel
network distance. The along network distance is more physically meaningful as respect to
the Euclidean distance.

However we encountered instability issues when updating the water levels far from the
observation location especially in those areas with  higher channel slope because the
changes of terrain elevation from upstream to downstream. This instability issue
motivated us to not apply a standard localization technique, but propagate the correction
(the difference between the posterior and the forecast state) upstream and downstream
with our proposed methodology, that.

We updated the manuscript text illustrating the state of the art and the issues of
localization in the methodology.

Moreover, we also implemented the inflation as suggested by the reviewer.

 

 

 

ID: R1_14

Referee comments: 

Further, to stop the model each time a new observation arrives, as it is described, seems
rather ineffective regarding the assimilation of the river gauge continuous time-series. The
authors could look at asynchronous assimilation approaches, so it  is not strictly needed to
stop the model as frequently.

Authors’ reply: We thank the Referee for the good suggestion. The need of stopping the
model and saving the binary files is just a technical reason that can be solved in a future
step accessing to the hydraulic machine code .

Asynchronous assimilation approaches can be a valid alternative to reduce the number of
model stops, even if each time step they are used, they require little higher cost to the



computational time and the storage requirements.

Actions:  We mentioned the potential adoption of asynchronous approaches as future
investigation in Section 4.4 as follows: “The need of updating the model states each time
the stage gauge observations are available can affect the efficiency of the model in terms
of computational performance. Alternative approaches such as the Asynchronous
Ensemble Kalman filter (AEnKF, Sakov et al., 2010), allowing to ingest past observations
over a time window, to update model state at a specific time step, could help reducing the
times when the model is stopped, even if each model updating require little higher costs
to the computational time and higher storage requirements”

 

 

ID: R1_15

Referee comments: 

Section 2.2.3

L205: provide some citation (i.e. to George Matheron) for Kriging.

Authors reply and actions:  We added some citations “(Matheron,1969; Oliver and
Webster, 1990)”

 

ID: R1_16

Referee comments: 

Section 2.2.4 Model errors

L222 The Q^true should be Q^observed. Also, the inflow error is simulated as as white
noise. This is hardly realistic and, beyond this, a more realistic noise should actually
improve the assimilation. I believe this partly explains the lack of success shown by Figure
8.

Authors’ reply and actions: Q^true can be the Q indirectly observed from the stage
gauges or simulated by the hydrologic model.  We changed this as  Q^os specifying the
this is the observed (derived from the flow rating curves) or simulated inflow.

We also agree that the white noise is not realistic for flows derived both from stage gages
(QSG) and from hydrologic modelling (QI).

To take into account the temporal correlations of the inflows, we modified the inflow
perturbation. Following the procedure proposed by Garca-Pintado et al. (2013), we
considered the matrix of inflow errors for a generic time step t as the element-wise
product between a emporal correlated errors (following Evensen, 2003 approach) and the
heteroscedastic error, whose variance is proportional to the flow value at time t. 

We didn’t consider a spatial correlation for the SG-derived observations because errors in
stage measurements and uncertainties in rating curves are normally independent between
sites. On the other hand, we considered a spatial correlation in the inflows derived from
the hydrologic model considering a Gaussian-decay correlation model based on the



distance between the locations of the point inflow boundary conditions (Garcia-Pintado et
al., 2013).

Finally, we believe that the “lack of success” (i.e. the limited persistence of the model
performances) is due to the sole model state correction without updating the model
inputs. This limited persistence of the model is confirmed by other studies (Andreadis et
al., 2007; Matgen et al., 2010; García-Pintado et al., 2013; Andreadis and Schumann,
2014).

 

ID: R1_17

Referee comments: 

Section 2.2.5

L242  2.2.6 should be 2.2.5.1

Author’s reply and actions:  Thank you, there were some issues at the fourth level of
the subsection formatting. We corrected all the sub sections’ numbers.

 

 

ID: R1_18

Referee comments: 

L248 Again, replace “true” by “observed”. And, again, hard to believe the lack of temporal
correlation in these errors.

Authors’ reply an actions: We agree on replacing the “true” superscript. We replaced
h^true with h^obs. The temporal correlation was added to the stage gages observations.

Actions:  

 

ID: R1_19

Referee comments: 

L252  2.2.7 should be 2.2.5.2

Author’s reply and actions:   We thank the referee, We corrected all the sub sections’
numbers.

 

ID: R1_20

Referee comments: 

L268. Which GIS algorithm?



Author’s reply  and actions:  We added some lines to better explain the GIS algorithm
that allowed to create the perturbed generic i-DTM of the ensemble generating a vertical
error with a normal distribution characterized by a zero mean and a variance that is
uniformly distributed with a specific CDE: “The above-mentioned GIS algorithm includes
the following steps: 1. Generation of a raster (NR) of random values with a normal
Gaussian distribution (μ=0, s=1) for the entire extension of the DTM; 2. generation of a
raster(SR) with the average of the NR values within a neighborhood equal to CDE; 3.
creation of an error distribution raster (Err) dividing the SR raster by its spatially averaged
standard deviation and multiplying the result for the adopted variance (U(0,0.3));4.
addition of the Err raster to the original DTM”

 

ID: R1_21

Referee comments: 

L288 agricoltural -> agricultural

Author’s reply and actions:  Thank you, corrected.

 

ID: R1_22

Referee comments: 

Figure 5: An issue with this plot is that from the manuscript it is unclear how often are the
observations, and as this seems to be both an “observed” location whose information is
assimilated into the model and a location with observations against which the model
forecast is evaluated, it is difficult (if possible) to disentangle the forecast skill here, or
how much of the assimilated run line comes from the gauge observations themselves.

Author’s reply and actions:  We thank the Referee for the comment, we agree that the
model performances should be evaluated also far from the assimilation location. We
produced a new set of results  where we assimilated only the upstream stage  gages
observations (ASS 1SG) to evaluate how the performances behave and vary downstream.
We kept also the results on the assimilation of the 4 stage gages (ASS 4SG) to show how
the covariance and the model uncertainty behave along the computational domain. The
frequency of the assimilate observation is 15 minutes (very frequent as respect to the
plots scale), therefore we deicide to not show the frequency on the plot, but we specified
the frequency in the caption.

 

ID: R1_23

Referee comments: 

Figure 8 & Section 4.2: The lack of persistence in the benefit in assimilation the satellite
observation seems directly related to the white noise mentioned above. Consider time
autocorrelated inflow errors.

Authors’ reply: We thank the Referee for the comment. According to the Referee’s
suggestion we added the time autocorrelated inflow errors. However, the lack of
persistence is consistent with other outcomes in scientific literature where hydraulic model



states are updated (few hours or even minutes, e.g. Andreadis et al., 2007; Matgen et al.,
2010; García-Pintado et al., 2013; Andreadis and Schumann, 2014). Some of these
studies demonstrated that the updating of inflows boundaries (with and augmented
equation)  can increase the persistence of the errors reductions between the observations
in both 1D and 2D models. This can be a future improvement of the proposed work, as
specified in Section 4.4
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