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General comments:

This is an intriguing study that combines two distinct deep-learning technologies (the
convolutional neural network, CNN, and long short-term memory neural network, LSTM)
to create a new method for regional daily streamflow prediction that integrates complex
spatiotemporal structures and dependencies.  The method is applied to streamflow data
from the southern portion of Canada’s two westernmost provinces, which is a
geophysically complex and interesting region.  Some effort is also made to address
physical interpretation and meaningfulness of the technique.  It is a promising study with
widely relevant results that has strong potential for publication in a top-tier hydrology
journal like HESS.

That said, the submission as it currently stands appears to have some substantial issues
that need to be addressed before it can be considered for publication.  The overall feel of
how the manuscript is written is one of technical naivete and oversimplification,
undermining the credibility of the study.  For example, the text of the paper and possibly
some of the analytical steps suggest a superficial understanding of the physical hydrology
of western Canadian rivers and their associated datasets; and overall, the literature
review around machine learning and its hydrologic applications is wholly inadequate and
does not provide the reader with accurate and meaningful context to the study. 
Additionally, several basic elements one normally expects of a machine learning paper
today seem to be missing, like clear descriptions of training vs. testing vs. validation data
subsets, or the use of informative benchmark models to evaluate the new model against. 
The study is also not reproducible based on the limited information provided in the paper.

My recommendation is to accept the paper for publication in HESS pending major
revisions.  I hope the detailed comments provided below, as well as the references section
that follows those detailed comments, will be helpful to the authors as they revise their
manuscript.



Detailed comments:

* Line 30: Should also cite Hsu et al. (1995) here, as to my knowledge it was the first
peer-reviewed journal paper to present the use of machine learning for rainfall-runoff
modeling.  (Full literature citations are provided below.)

* Lines 34-37: This feels like an overstatement/misstatement of both the limitations of
conventional machine learning and the advantages of deep learning in a hydrologic
prediction context.  For one thing, a basic result in AI, dating back to the late 1980s or so,
is that non-deep ANNs (in particular, multilayer perceptrons having a single hidden layer)
are theoretically capable of learning any continuous relationship.  Another issue: contrary
to what is implied in the passage, non-deep ANNs are not the only kind of non-deep
machine learning – there are several other major classes (random forests, support vector
machines, and so forth).  There also continues to be intense research in non-deep ML to
create new kinds of AI, including news kinds of neural networks, having certain useful
characteristics that have been successfully applied to river prediction; online sequential
learning is an obvious example (e.g., Lima et al., 2015, 2016, 2017).  Indeed, new kinds
of non-deep machine learning algorithms are being developed specifically for
hydrometeorological analysis and prediction tasks (e.g., Cannon, 2010, 2011, 2018;
Fleming et al., 2015, 2019, 2021).  On the other hand, deep learning applications in
hydrology are currently in vogue and seem to be very promising in certain circumstances,
but the body of work on the subject – particularly around streamflow prediction – remains
exceedingly small, and the ultimate suitability of deep learning to this task, including
capabilities and limitations, remains unclear at this point.  A more mature way of looking
at deep learning in hydrologic prediction is that work to date suggests it is a promising
research direction that could potentially offer an alternative or complementary approach to
non-deep machine learning for certain tasks.

* Lines 49-50: The use of point observations (of weather, presumably) does not
necessarily imply that a model is spatially lumped.  It is very common in process-based
hydrologic modeling, including semi-distributed and fully distributed models, to spatially
interpolate measurements from point data sources.  In fact, some process-based models
even integrate that spatial interpolation step into the software platform, along with
adjustments for adiabatic lapse rates, etc., etc. 

* Lines 67-70: Explainability is an issue for all machine learning models, not just deep
learning models; it feels like this passage is conflating ML generally with DL specifically. 
For a recent example of a new non-deep ML technique specifically introduced to improve
interpretability of a practical hydrologic prediction model, see Fleming et al. (2021), which
also provides a much better explanation of exactly why geophysical explainability is a key
requirement for practical applications of machine learning in hydrologic prediction.

* Lines 78-79: the authors are not using the terms white-box and (in particular) black-box
in the way they are usually used.  Most working in hydrology, in particular, would regard



any physically explainable ML as being white-box in some sense.  The term “black-box” is
normally reserved for machine learning algorithms that do not offer any physical
interpretability, which is to say, most of them.

* Lines 85-86: would be useful to note the similarities and differences between recurrent
and LSTM neural networks here for a general readership.  The text seems to be
haphazardly switching between the two, which are related but not identical; LSTM is
essentially a specific and advanced form of recurrent ANN.  This applies to the title of the
paper too; why "recurrent" instead of "long short-term memory"?

* Lines 104-105 are a bit off as well.  There seems to be an implication here that more
complex models are better models, and that in contrast this study is aiming for
parsimonious models.  That’s an odd way of looking at the desirability of different
modeling approaches and structures.  Most modelers view a parsimonious model as being
fundamentally better, holding all else equal, i.e., so-called Accom’s razor.

* In addition to the various other papers referenced in this review that should be cited in
the paper but were not, the authors may also wish to read and cite the review articles by
Reichstein et al. (2019) and McGovern et al. (2019).  Citing prior applications of machine
learning to hydrologic and related modeling in the study area would also be appropriate. 
Some examples that come to mind include Rasouli et al. (2012), Lima et al. (2015, 2016,
2017), Snauffer et al. (2018), Fleming et al. (2015), Hsieh et al. (2003), and Shrestha et
al (2021).

* Figure 1 would be much better, especially for an international readership that is unlikely
to be strongly familiar with the study area, if it was a multi-panel figure that additionally
illustrated topography, mean annual temperature, mean annual precipitation, and perhaps
mean April 1 snow water equivalent.

* Lines 137-139: perhaps this passage merely is poorly written, but as it stands, the text
implies a disturbing lack of understanding of the streamflow data being modeled. 
Naturalized flow data are flow data that have been adjusted for upstream water
management activities – diversions, withdrawals, reservoir operations, etc.  Data for
stations upstream of dams are not necessarily naturalized, contrary to what is implied in
this passage of the paper, and certainly in datasets like the HYDAT database used here,
that step has not been undertaken and in many cases is unnecessary.  Similarly, dams are
not the only disturbance that result in non-natural streamflow data that would in principle
require naturalization prior to use in a hydrologic modeling study of the sort done here;
another obvious example is land use change.  Why not use the Reference Hydrometric
Basin Network (RHBN) stations or something similar?  There is no mention here at all of
the RHBN station network, which has been very widely used for decades for hydrological
analysis and modeling studies in Canada.  Also, I think quite a few hydrologists would
raise their eyebrows at the specific data selection and processing procedures described in
the first paragraph of section 3.1.



* The second paragraph of section 3.1 is also muddled.  All that’s needed here is a concise
statement that hydrometric network density is much higher in southern than northern
Canada, and so, for the purposes of this study, the authors focused on the former.

* While the approach described on lines 159-170 is interesting and perhaps sufficient for
the purposes of this study, overall it appears to be a naïve representation of
spatiotemporal pattern formation in streamflow regimes in this study area.  At an absolute
minimum, some acknowledgement of prior work, and some caveats about the simple
method and assumptions used here for regime classification, are needed.  See in
particular Halverson and Fleming (2015) and references cited therein.  A particularly
notable omission is that glacier-fed rivers are not identified as a distinct regime, whereas
glacial cover is well-known to be a major control of streamflow dynamics in several areas
within this region; see Moore et al. (2009), Fleming et al. (2016), Jost et al. (2012), and
Bidlack et al. (2021).

* Section 3.1: I think reproducibility requires that the hydrometric station list used here
be shown to readers.  A table in an appendix or supplementary materials would be fine.

* Section 3.5: provide information about the latency of the ERA5 reanalysis product – is it
available in near-real time?  Some reanalysis products are, and some aren’t.  It’s a crucial
question if one were interested in operationalizing a hydrologic prediction system like this
for actual use in flood forecasting or another similar practical hydrologic prediction
application.  If ERA5 products are not available in near-real time, then briefly but clearly
state that limitation and its implications for wider use of the modeling framework
introduced here.

* “data” = plural

* Somewhere in Section 3 or 4 there needs to be an explicit and clear description of what
the training vs. testing vs. validation datasets are.  There is a very brief mention of
training vs validation but it is inadequate.  The reader is not provided with information
about how the training vs validation split is made, nor whether another subset is reserved
for out-of-sample hyperparameter selection.  These are standard practices in machine
learning, and information about them is needed for transparency, reproducibility, and
credibility of the study. 

* A modern paper on machine learning applications to hydrologic prediction requires, in
general, a performance comparison against some relevant benchmark model.  Linear
regression using precisely the same input dataset as the deep learning method introduced
here is an obvious starting point and can provide a meaningful assessment of how much
nonlinearity, interactions, etc contribute to the (presumably better) performance of the
new technique.  A conventional ANN and an LSTM would also be useful, if more ambitious,
points of comparison.  The only significant attempt the paper makes at this is Table 2,
which scours the peer-reviewed journal literature for examples of hydrologic models that



have been developed previously for a few of the locations considered in this study.  That
comparison is interesting and probably worth including in the paper, but it also has limited
meaningfulness as different date ranges etc were used in the studies.  Moreover, Table 2
relies on a small handful of academic studies and misses a lot of existing models within
the study area operated by pragmatic water-management organizations like a large
government-owned hydroelectric utility (BC Hydro), a provincial ministry (BC River
Forecast Center), regional water management authorities (e.g., the MIKE-SHE model
operated in the Okanagan Basin), and so forth.  Moreover, given that even the simplest
machine learning architecture outperforms process-based models in most cases, the
somewhat mixed results in Table 2 are a little surprising.  In Section 5 there is also a very
brief verbal comparison against the LSTM-based work of Kratzert et al. (2018) but that
study used a completely different set of basins and data, so again, the comparison is
extremely approximate.  I get that the purpose of this study is more around
demonstrating a new technology, and perhaps delving a little into the question of
explainability, but I suspect most readers would like to see more meaningful inter-model
performance comparisons here.

* Estimating predictive uncertainty is a key element of a hydrologic prediction system. 
Figure 6 and its caption suggests that predictive uncertainty is quantitatively estimated
here but is vague about the method.  It appears that an ensemble of 10 different models
is formed, and twice the standard deviation of the predictions from those 10 models on a
given day is used as the de facto prediction bound for that day.  This is a reasonable first-
cut approach, I think.  However, the method needs to be described in the methods
section, and some capabilities and limitations need to be mentioned; I suspect that
because weather uncertainty is not factored in (as far as I can tell from the manuscript as
submitted) the ensemble spread will be substantially under-dispersive.

* The bar for explainability does not seem to be set very high here.  The sensitivity
analyses included in the paper are very useful, but they really amount to more of a
plausibility test than an interpretability test.  In particular, the paper demonstrates,
though observing the CNN-LSTM responses to perturbations in the meteorological driving
data, that its streamflow predictions (a) are most sensitive to weather in and near the
basin as opposed to further away, and (b) are sensitive to temperature regimes, in
particular, demonstrate hydrograph timing shifts corresponding to changes in snow
accumulation and melt driven by temperature perturbations.  Those results suggest the
CNN-LSTM model is capturing key geophysical processes more-or-less correctly, but it
does not clearly reveal physical explanations of the input-output relationships – only that
the behaviors are consistent with some basic physical expectations.  I think the paper is
publishable without diving further into explainability, but the authors ought to phrase their
outcomes a little more precisely around the question of interpretability and may wish to
consider some additional sleuthing to demonstrate that the CNN-LSTM reveals physical
processes.  There is some precedent for this in machine learing-based streamflow
modeling, and looking closely at those precedents may be useful to the authors; examples
include Fleming (2007), Kratzert et al. (2018), and Fleming et al. (2021).  Looking even
more broadly across the literature than this would likely lead to even more suggestions of
how to examine the geophysical relationships the model is capturing.

* Lines 629, “it is notable that the CNN-LSTM model achieves good streamflow simulation
with only temperature and precipitation forcing data” – well, in practice the most widely
applied hydrologic models tend to use only these two types of forcing because that’s all



that is usually available, so I guess this point might be worth mentioning here but it’s not
particularly “notable” to most streamflow modelers.

* Lines 635-638: is it possible that, through its empirical and complex meteorological
input-hydrologic output mappings – effectively, a transfer function linking the
meteorological data to the point streamflow observations – the CNN-LSTM effectively
downscaled the reanalysis data, at least to some degree?  May be worth talking about
here.

* Lines 646-653: are the authors sure their method requires less data than an LSTM, as
claimed here?  Doesn’t the CNN-LSTM still ultimately need data for all N basins?  This
passage needs further explanation/clarification.
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