Reply on CEC1
David E. Gwyther et al.

Author comment on "Observing system simulation experiments reveal that subsurface temperature observations improve estimates of circulation and heat content in a dynamic western boundary current" by David E. Gwyther et al., Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-98-AC3, 2022

We thank the Editor for bringing these issues to our attention. We apologise for incorrectly providing the required code and persistent links. We have updated the manuscript as follows.

- We have archived the ROMS source code and the forcing files used to run the model simulations and added them to a persistent archive. A link to this archive has been included.
- We have updated the researchdata.edu.au links to link directly as DOI links.
- We have left the BoM and CSIRO links in place, but we have added the forcing files (which are extracted from the BoM and CSIRO data) to the new persistent archive link.

The code availability section now reads:

The source code, forcing conditions, configuration files and output for the simulations conducted here are available at https://doi.org/10.26190/unsworks/24146. The free-running EAC ROMS model forcing conditions are sourced from the Commonwealth Science and Industrial Research Organisation (BRAN2020; available at https://research.csiro.au/bluelink/outputs/data-access/) and the Bureau of Meteorology (BARRA-R and ACCESS; http://www.bom.gov.au/research/projects/). Along-track SSH data is available from the E.U. Copernicus Marine Service Information (https://doi.org/10.48670/moi-00146). Model configurations for the free-running and DA simulations are identical to those used in previous simulations (available online at https://doi.org/10.26190/TT1Q-NP46; https://doi.org/10.26190/5ebe1f389dd87). The model source code is open-source and available from https://www.myroms.org/.