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**Please note - all figure/table numbering referenced in this document refer to the
numbering from the initial submission version of the manuscript unless otherwise
specified.

The manuscript entitled “"Application of a Satellite-Retrieved Sheltering
Parameterization (v1.0) for Dust Event Simulation with WRF-Chem v4.1"”
presents an albedo-based sheltering parameterization development to be used in
dust transport modeling, namely WRF-Chem. The work presents a novel concept,
and can potentially advance desert dust modeling. The structure of the paper is
good, with extended information, clear methodology and solid scientific work.
There is one major issue in my opinion that more testing should have been done
for the domain configuration and there is a substantial lack of evaluation
metrics. More information is given in the comments below.

Response: Thank you for your review. We have made several of the reviewer's suggested
changes in the revised manuscript and believe it has strengthened the paper. Regarding
the domain and model configuration comments, we did an extensive series of sensitivity
tests to establish our model configuration and limit the potential for simulation errors
created by issues with the environmental forcing conditions from the parent WRF model
on the dust simulation. These efforts are thoroughly documented in the report by
Gallagher et al. (2022).

The Gallagher et al. study investigated the sensitivity of the simulated forcing conditions
from the parent WRF model driving the dust simulation to model initialization (spin-up)
time, initial atmospheric conditions, model resolution (both horizontal and vertical),
planetary boundary layer scheme settings, land surface model settings, cloud
microphysics settings, and cumulus scheme settings. While there are certainly more model
configurations that could be tested, findings from the Gallagher et al. study helped us
establish WRF model settings that effectively simulated the convective structure,
evolution, surface winds, and general placement of the storm cell that generated the case
study dust event discussed here in our dust modeling paper. We stress that the Gallagher
et al. (2022) report is meant to complement this work and focuses on many of the
atmospheric components relevant to the reviewer’s concerns. The scope of our study here
is to address the dynamic land surface and dust entrainment aspects of dust storm
simulation, not the underlying atmospheric forcing studied in our related work.



We’'ve updated the text from the first paragraph of Sect. 2.2 (model configuration) to
make this more clear.

“We used WRF-Chem v4.1 for our test case simulation with WRF parent model
configuration settings suggested by Gallagher et al. (2022) and chemistry settings from
LeGrand et al. (2019) and Letcher and LeGrand (2018). The study by Gallagher et al.
investigated the sensitivity of WRF-simulated atmospheric forcing conditions for the dust
event studied here. In particular, they focused on the effects of model initialization (spin-
up) time, initial atmospheric conditions, horizontal and vertical model resolutions, and
several WRF physics package settings to determine the optimal model configuration that
minimized environmental forcing condition errors on the dust simulation.”

We recognize that some GMD readers outside the U.S. may have difficulty accessing the
Gallagher et al. (2022) report from its official host site. A copy of the report is also
available on ResearchGate: https://www.researchgate.net/profile/Sandra-Legrand-2/publi
cation/362509421_Simulating_Environmental_Conditions_for_Southwest_United_States_
Convective_Dust_Storms_Using_the_Weather_Research_and_Forecasting_Model_v41/link
s/62ed81660b37cc3447718b53/Simulating-Environmental-Conditions-for-Southwest-Unite
d-States-Convective-Dust-Storms-Using-the-Weather-Research-and-Forecasting-Model-
v41.pdf

Regarding the quantitative metrics, we added additional commentary on quantitative
surface wind speed assessments (please see our response to a later comment).

Very well structured introduction with adequate information of available
parameterizations. In Line 63 please add the reference: Spyrou, C.; Solomos, S.;
Bartsotas, N.S.; Douvis, K.C.; Nickovic, S. Development of a Dust Source Map for
WRF-Chem Model Based on MODIS NDVI. Atmosphere, 2022, 13, 868.
https://doi.org/10.3390/atmos13060868, which is an up-to-date use of NDVI in
defining dust sources. In Line 77 please add the reference. Skamarock et al.
(2019). This reference is written later on, but it is best to put it here, where is
the first mention of WRF.

Response: Thank you for the suggestions. We have added these references
accordingly.

Section 2.1.1. This section is unnecessary large and mostly a repetition of the
AFWA processes already described in other works. I would suggest limiting this
section to half a page by only keeping the equations that are mostly relevant to
this work. For instance the S parameter equation and analysis is not needed. The
sentence “Essentially, S is a spatially varying tuning parameter ranging from 0 to
1 that assumes erodible material accumulates in low points in the terrain.” is
enough.

Response: We appreciate the reviewer's comment and agree that shortening the
previously published model component descriptions would make the paper more
streamlined. However, while there are several other works documenting AFWA module
equations and the processes they represent, several published sources also contain
misinformation about how the AFWA module works. This lack of consistency in the
literature is likely due to the eight-year gap between when the AFWA code became
publicly available through the WRF-Chem framework in 2011 and when the original
developers published the first in-depth overview of the AFWA module in LeGrand et al.
(2019). Due to the poor documentation heritage associated with the AFWA code, we
strongly feel that GMD readers will benefit from a comprehensive overview of the AFWA
module components discussed in this paper, especially with respect to parameters like the
source strength field (S) that we removed or modified as part of our experiment.



Section 2.1.2. Line 177. The process by which the daily MODIS-derived fields are
incorporated is not clear. Are they a part of the WPS process or a module is
created that reads and re-grids the MODIS files while the model is running? As is
written I assume this happens during runtime. Can you expand a bit?

Response: For this study, we incorporated the MODIS-derived fields through an auxiliary
channel while the WRF-Chem simulation was running. The report by Michaels et al. (2022)
fully documents how WRF-Chem pipes these data from the auxiliary feed through the
chem driver to the AFWA module. The Michaels et al. report also provides detailed step-by-
step instructions and scripts for acquiring, processing, re-gridding, and ingesting the
MODIS fields, which we note in this section and again in the model code availability

section near the end of the manuscript. While it makes sense to eventually add these
processes to the WRF Preprocessing System (WPS), these additional steps were beyond
the scope of our study.

We’'ve updated the sentence to clarify.: “To incorporate u.« into the AFWA dust emission,
we configured WRF-Chem to ingest daily MODIS-derived u,.« fields (Eq. (11)) that had
been interpolated to the model grid domain into the WRF-Chem framework through an
auxiliary channel at model runtime and modified the dust emission equations to use ug« in
place of ux.”

Section 2.1.2. Line 179. You use the 10m wind speed that is derived while WRF is
running. Why not use the first model level wind speed? In general we try to
avoid the 10m speed as the 10m wind components are diagnostic quantities. If
we need wind speeds this close to the ground it is best to lower the first model
level as close as we can and increase the vertical levels used. This is critical as
the dust emissions are very sensitive to small changes in wind (as the authors
state). If possible I would like to see changes between using 10m wind speed
and first level wind speed (where the first level is close to 10m). It is entirely
possible that the differences are negligible and 10m wind speed is adequate.

Response: Thank you for this insightful comment. After looking into this, we found that
our lowest model level is already approximately 10 m above ground level, and differences
between the lowest model level wind and 10 m wind fields are relatively negligible. Finally,
we ran a brief test simulation that used the first model level winds instead of the 10 m
winds and found no major changes in the dust simulation; therefore, we think that in this
case, and in cases with a sufficiently high vertical resolution near the surface, the 10 m
wind speeds are appropriate.

However, there are additional considerations we would like to address. Specifically, we
caution against using the lowest model level winds in place of the 10 m diagnostic wind
speed here for a few reasons:

= First and foremost, we're applying an established methodology from Ziegler et al.
(2020) to explore if the albedo-based drag partition parameterization in its current
form can improve AFWA module-simulated dust emission patterns. Critically, the
Ziegler et al. (2020) approach, derives the albedo-based partition using the 10 m wind
speed as an input, so it is possible that wind speeds associated with heights closer to
the land surface may worsen outcomes.

= The empirical components of the u,s« equation (Eq. (11)) were initially derived relative
to what Chappell and Webb (2016) referred to as the freestream wind speed flowing
above engineered roughness elements in a wind tunnel environment. This freestream
wind speed value may not have a direct physical equivalent to a real-world setting, but
replacing it with wind speed values closer to the immediate ground surface would not
make sense in this context.

= The core AFWA module equations are based on wind friction speed, not wind speed.



From the AFWA module perspective, changing the vertical model level heights will not
directly affect the AFWA module calculations. Wind speed is only used in the conversion
of Upex tO Ugs.

= Qur lowest model level being situated approximately 10 m above ground level is a
coincidence. We used the WRF v4.1 default vertical atmospheric level distribution set
by the WRF model’s real executable (real.exe). Older or newer versions of WRF may
not adhere to this standard. Furthermore, these particular vertical-level settings may
not always be appropriate for all domain or case study forcing conditions. For example,
the current WRF v4.1 hybrid vertical coordinate is not a consistent height above ground
level. Instead, it is dependent on the vertical distribution of temperature and pressure,
especially close to the ground. For events with dramatic changes in temperature and
pressure, the effective height of your lowest model level can vary both in time and
space, whereas the 10 m diagnostic wind ensures a common reference height. Setting
a dependency on the vertical level configuration may make it challenging for others to
apply the drag partition treatment in their respective WRF-Chem model configurations.

Section 2.2. Just a small note for those unfamiliar with the area, the dust source
area should be noted clearly.

Response: Unfortunately, we cannot directly attribute dust emissions for this event to a
specific source location because the satellite imagery was cloud-obscured. For this
analysis, we can only speak to “dust sources” in terms of how the aerodynamic roughness
length (z;) and vegetation masks are applied to their respective model configurations
(e.g., Fig. 4). It's important to remember that a general lack of widespread dust
entrainment in our simulated test cases configured with a drag partition treatment does
not necessarily imply a lack of dust sources in the associated area. Rather, roughness
elements may have suppressed dust generation by blocking or reducing momentum
transfer from the atmosphere to the soil surface. We've added an additional “storm
summary” figure to Sect. 2.2 to help readers conceptualize the general placement and
forcing conditions associated with the main dust wall to help alleviate confusion regarding
where dust entrainment likely occurred.

Section 2.2. The meteorological conditions and weather patterns that led to this
event should be described in detail. For example Mean sea level pressure and
wind patterns at the surface and at 850hPa should be added (even from the
model simulations, if weather maps are not available). Is the event related to a
density current? I see later on that you use NEXRAD. Is this the reason?

Response: The atmospheric evolution of this event is fully explored in the report by
Gallagher et al (2022) referenced at the beginning of Sect. 2.2. Note, the Gallagher et al.
report goes into great detail on the synoptic, mesoscale, and local conditions associated
with the entire lifecycle of our focus dust case study event using a broad collection of
analysis fields, radar composites, and observations for support. The new conceptual storm
summary figure mentioned above should help readers visualize the general forcing
conditions associated with the storm event.

We've added the following sentences to the end of the first paragraph of Sect 2.2.: “Figure
1 provides a conceptual overview of the general environmental forcing conditions
associated with the dust event. For a more in-depth review of the storm evolution,
including synoptic, mesoscale, and local condition assessments using a broad collection of
analysis fields, radar composites, and observations for support, we encourage readers to
review the Gallagher et al. (2022) report.” (Please note - the new Fig. 1 referenced here
was not part of the original manuscript submission.)

Figure 2. Mark the X spot more clearly. Add a circle maybe?



Response: We've enhanced the Phoenix marker in Fig. 2 to make it stand out better.

Section 2.3. Line 233. The 12 hour initialization is not adequate to generate a
proper dust concentration background. In general 5-15 days are needed for this,
but seeing as the dust event is very quick and localized one can assume that 12
hours is enough. Still this needs to be expanded upon.

Response: We agree with the reviewer that extended model spin-up times are often
necessary for spinning up background dust (and other aerosols). Indeed, the majority of
the dust associated with our case study event was localized and produced by dust lofting
along a convective outflow boundary. The Gallagher et al. (2022) study reviewed the
model sensitivity to initialization time and found that extending the spin-up time to 24
hours (i.e., starting the simulation on 2 July 2014, 1200 UTC instead of 3 July 2014, 0000
UTC) caused the simulation to diverge from the observed pre-convection environment,
degrading the overall simulation accuracy. The aforementioned update to Sect. 2.3 (model
configuration) notes this model spin-up time assessment.

Section 3. A more thorough statistical analysis is needed. There are no statistical
indexes calculated. Also the text structure is a bit confusing. In my first read I
thought that no timeseries was created until I saw figures 12 and 13. This needs
to be written again in a more concise and analytical way. A statistical evaluation
should also be performed, even a rudimentary one with all the available data for
wind speed and PM10. Unfortunately qualitative analysis in not enough.

Response: Thank you for your comments. The results section begins with an overview of
the u.¢« field, reviews the environmental forcing conditions and dynamic components of
the dust emission scheme, and ends with an assessment of the resultant dust-related
parameters produced by each test configuration. It's not entirely clear which parts of the
text’s structure were confusing to the reviewer. However, we have attempted to improve
the text. In particular, we have updated sentences introducing Figures 8-14. While Fig.
8-14 are all time series plots, Fig. 8-11 and Fig. 14 are spatial time series plots. We have
added “time series of <parameter>" text lead-ins throughout Sect. 3-4 (including figure
captions) to help clarify.

The Gallagher et al. (2022) companion assessment included a statistical analysis of
surface wind speeds in the innermost model domain where the main dust event occurred.
They found that the average wind speed bias for the entire forecast period was +0.59 m
s't, However, most of this overestimation occurred at night, outside the main convective
period. We have updated the text from the first paragraph of Sect. 3.2 accordingly: “..The
model was able to reproduce the storm’s general structure and timing, including the
formation of the initial quasi-linear convective system and the collapse of the convective
line into individual cells. Furthermore, the simulated near-surface wind speeds were in
good agreement with wind speeds observed at ASOS stations. However, simulated wind
speeds peaked 1 to 2 hours early in some locations with slightly higher (about +1 m s%)
intensity. According to Gallagher et al. (2022), these minor wind speed errors may be
partly due to erroneous land use characterization, particularly in the higher terrain
elevation areas where the storm initiated. Gallagher et al. also performed a full statistical
analysis of simulated surface wind speeds against all available ASOS wind speed data from
the innermost domain (D03). The average wind speed bias for the entire forecast period
was +0.59 m s™*. However, a large portion of this overestimation occurred during non-
convective nocturnal periods (3 July, 0500-1500 UTC and 4 July, 0800-1600 UTC).”

Statistical analyses of PM10 are less straightforward. As discussed in Sect. 3.3, the EPA

PM,, stations are not equally distributed across the domain. Instead, these stations are

tightly clustered around population centers (e.g., the dense station network surrounding
the Phoenix metropolitan area). As a result, any misalignment in storm position can



substantially affect the reliability of point-based PM,, station comparisons. This is
especially important to consider for our case study given the slight position and timing
offset of the storm (e.g., Fig. 7c). Hence, we chose to limit our PM,; assessment to a
qualitative analysis of the maximum PM,, value simulated along the gust front.

Some studies (e.g., Hyde et al., 2018) compare hourly average PM,, observations against
hourly average simulated PM,, values on the county level. While this may make sense for
widespread dusty conditions, this approach may not work well for highly localized haboob
conditions like our focus case study event. We tested this hypothesis for our case study
using the combined Maricopa/Pinal county area (e.g., Fig. 12), keeping in mind that the
main dust wall crossed directly over most of the PM;, stations surrounding Phoenix. This
assessment approach made the CTRL configuration appear to perform better than the
ALT3 and ALT4 configurations artificially because the two alternate configurations
incorporated several grid cells with low PM,, values (correctly) in areas with no PM;,
station coverage. If we attempt the same exercise with hourly maximum county values
(which largely mirror our outflow boundary max PM,, assessment shown in Fig. 12)
instead of hourly average county values, we still end up with deceptive results due to the
minor position and timing offsets that affect when the simulated storm entered/exited the
combined Maricopa/Pinal county area boundaries.

Accordingly, we maintain our position that point-based PM,, quantitative analyses for this
case study event would be misleading.

The authors also state that “small shifts in the simulated dust position could
greatly affect the apparent skill of the simulated output”. This is correct but an
effort should be made to setup the model in such a way to try to see if the wind
and dust forecasts can be improved. Even using different initial conditions, or
SST. Right now the selection of the domain was done based on another work
which provided good results, but maybe this setup is not adequate for this study.
More testing is needed in order to have a proper domain basis to evaluate the
methodology.

Response: Please see our previous comments and text adjustments about the parent WRF
model configuration. We appreciate the reviewer’s comment (and recognize the
importance of correctly simulating the environmental forcing conditions for simulated dust
entrainment assessments). However, we also acknowledge that the mesoscale details of
mesoscale convective system (MCS) evolution are a source of irreducible uncertainty
within WRF. For example, operational mesoscale models like the High-Resolution Rapid
Refresh (HRRR; e.g., Benjamin et al., 2016), often experience difficulties with the timing,
location, and morphology of convective storms. So, while the large-scale forcing
conditions and convective initiation were well captured by our simulation, the exact
timing, shape, and location of the resulting MCS were subject to error. Of the two
challenges, we consider it more important for the simulation to capture the structure and
underlying dynamics of the storm(s) rather than the(ir) precise location, as the latter is
easier to adjust and account for than a misrepresentation of the convection as a cluster of
thunderstorms, supercell, or mesoscale convective system instead of the observed quasi-
linear convective system. Additionally, there was an extensive amount of work put into
determining our model configuration to limit and document errors in the predicted wind
field in Gallagher et al. (2022).

The results section is clear and the shortcomings of the methodology are
presented. I would like to see a more extensive analysis on the benefits of using
the proposed methodology in dust modeling

Response: We appreciate the reviewer’'s comment. For this preliminary analysis, the
benefits of the methodology are manifest in the vast improvements we see with ALT3 and



ALT4 over the initial CTRL configuration. This paper aims to show the weakness of the
existing approach, and in the context of a single storm, introduce the adapted module
with a drag partition included. We agree that continued research is needed (which we
highlight in both the discussion and conclusions). If future studies warrant, continued use
of satellite-derived roughness information and its effects on dust emission in the AFWA
module could markedly improve investigations of the role of short- and long-term changes
in vegetation on dust emission patterns. This, in turn, could be of benefit to model users
interested in drought hazard, climate change, land management, and post-wildfire
condition modeling applications.

We added the following commentary to the end of the conclusion section.: “The benefits of
using a drag partition methodology in the AFWA module are manifest in the vast
improvements we see with ALT3 and ALT4 over the initial CTRL configuration. Follow on
studies investigating the benefits of the approach over longer simulation periods are
needed. However, we anticipate that satellite-derived roughness information and its
effects on dust emission in the AFWA module could markedly improve investigations of the
role of short- and long-term changes in vegetation on dust emission patterns. This, in
turn, could be of benefit to model users interested in drought hazard, climate change, land
management, land use/land cover change, and post-wildfire condition modeling
applications.”

Should the above be addressed I would like to see this work published in GMD.
Response: Thank you. We appreciate the support.
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