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Zhu et al. develop a machine learning (ML) burnt area model that can be used in place of
a process-based algorithm in ELM. This approach was first used to surrogate the fire
model of Li et al. which was in CLM (and then now ELM). The ML approach uses a deep
neural network to reproduce the process model result (they call it Base). Then by altering
the parameters they tuned it to match GFED4 burned area. The paper is clearly written
and results are generally well presented. I found the work interesting as this is an
important problem. Present process-based fire models are not overly skillful. Much of this
stems from the many complexities of fire modelling - especially anthropogenic influences.
I am optimistic this paper can be published but I would like to see some careful
consideration of my comments below. At present the manuscript is what I would consider
an absolute bare minimum of what can be published and there are many opportunities to
make this paper into a much better resource to the community. This particular approach
could be valuable but I think it needs some expansion to demonstrate how useful
imbedding ML approaches in process models can be. As a result I would like to see some
expansion of the work to better demonstrate the utility of the approach.

Main comments:

- The DNN-Fire model was subsequently tuned to match GFEDv4 but this is not the only
burned area product available (e.g. Chuvieco et al. 2019). Indeed there are many other
products now available and they don't agree so well (e.g. Padilla et al. 2015, Humber et
al. 2019). I worry that by tuning the model to reproduce one dataset you may get a result
closer to that dataset but at the expense of adopting its same biases and thereby
potentially not getting as admirable advances in accuracy at it seems. Why not consider all
of the available burned area products to produce a burned area estimate that could then
be less biased by a single dataset? As, in reality, we are most interested in increasing our
predictive skill - not just reproducing an observation.
- By surrogating Base-Fire, the DNN-Fire then integrates/assumes the biases and issues
apparent in ELM's simulations (e.g. too much/little biomass, too dry/wet soil, etc.) and



produces a model that aims to get the right result (burned area matching GFED)
potentially for the wrong reasons (based on biased inputs). Why not run an ensemble
approach with different forcing datasets (e.g. met forcing of CRUJRA in addition to
GSWP3, or a different land cover (if using prescribed), etc.) to try and give at least a
measure of the uncertainty in these inputs to the DNN? We have found for our model (run
in normal process-based mode) the results can be surprising and have some strong
impacts for certain variables. Gitta Lasslop looked at this too and found a large impact
upon fire, primarily due to the wind speed differences (e.g. Fig 3 in Lasslop et al. 2014).
Alternatively using an observation-based product of one of the ELM variables (Table 1) like
soil wetness or above ground biomass as another means to look at the influence of input
bias. 
- Around line 188 you describe the training/testing split. This approach of doing it
randomly makes me wonder if the influence of spatial autocorrealtion will result in an
overly optimistic error estimate. Especially as fire is likely  autocorrelated. There are many
papers in the literature discussing the dangers of random sampling on spatially correlated
data (e.g. Roberts et al. 2017; Meyer et al. 2019; Ploton et al. 2020; Kühn and Dormann,
2012). I would suggest an alternate strategy be employed. It also wasn't clear how this
test/train split results were integrated. I think it was just in the model score?
- What is the impact of training on such a short timeseries of fire observations when some
regions have fire return intervals of >100 years? Also how representative are those years
chosen? Would it matter if you instead trained on 2006 - 2015 and tested on 2001 -
2005? 

Small comments:

- Figure 7 is the same as the years trained upon so there is little interesting information
here. Basically this is showing that it can do an ok job when tested over the same training
region. Why not expand this out beyond the satellite era? How does this do from say 1900
on? Yes there is no satellite data but there are other means to check results (see e.g.
Arora and Melton 2018)
- Didn't GFEDv4 offer some uncertainy bounds?
- Fig 8 to make a stronger demonstration that this is a signifcant improvement, what
about plotting the models of FireMIP as further reference points? E.g. Hantson et al. 2020.
- line 41, a more up to date reference would be Lasslop et al. 2020 as it was done with
more advanced models
- l 90: A good reference could be Rabin et al. 2017 as there are some figures showing
explictly how the models differ.
- l 186 - to be clear, the 14 submodels were combined to produce the global estimates
right? Would there be benefit from doing even more sub-regions? What about 20, 50, etc?
Where are the diminishing returns here?
- L 276 - was this talking about the speed of creating DNN-Fire or DNN-Fire-GFED?
Several minutes on a laptop? HPC? 
- Fig 8 - it seems that DNN-Fire-GFED might be less variable than GFEDv4, is that correct?
Is this due to the inputs to the ML or is it a result of the ML approach itself?
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