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Review of

DINCAE 2: multivariate convolutional neural network with error estimates to reconstruct
sea surface temperature satellite and altimetry observations

The paper presents an update on the previous version of DINCAE, a convolutional
autoencoder method for in-painting of sparse satellite data. DINACE2 presents some
improvements over the previous version, most notably in performance (vs DINCAE1),
speed (presumably due to being rewritten to Julia from Python) and an option to treat
ungridded data like satellite altimetry observations. It also introduces an extra refinement
step in the cost function to increase its depth, and an intermediate loss term is included in
the total loss to compensate for the vanishing gradients of the deep network. When
treating sparse data, the error variance estimation of DINCAE2 is more reliable than that
from variational interpolation method DIVAnd. The results are solid, the paper is well
written, the figures are clear. I recommend publication after minor revision. I do have
some comments which might be worth discussing further.

 

Specific comments:

 



page 4, eq4: In the comment to equation 4, the authors state that CAE refinement leads
to a deeper network and thus to potential worsening of the vanishing gradient problem.
They attempt to mitigate this by including intermediate loss term into the total loss
function. They state that by doing so, the vanishing gradient problem is reduced. Can the
authors perhaps illustrate more clearly that this is indeed the case? Is there a way to say
a bit more about this, so that the reader does not have to take the author’s word for this?

Also, wouldn’t an arbitrary number of refinements further exacerbate the vanishing
gradient problem? Which term would be dominant in this case – adding further refinement
steps versus including further intermediate losses to the total loss?

Page5: when handling missing data there is an interpretation throughout the text that
setting the missing value to zero corresponds to an infinitely large error. This is
undoubtedly true for variables which are normalized by their variance, as those in this
paper. However there are a number of other scalings where variables are not normalized
by their variance. In these cases, it seems to me, the authors interpretation is not the
most appropriate. I would propose an independent interpretation that setting the missing
values to zero simply numerically means that there will be no back-propagation of error
from those missing data – thus the training can continue without any impact from the
missing data. This interpretation does not have anything with the specific variable
normalization at hand.

A cosmetic remark. The hyperparameters were tuned using Bayesian optimization, which
seems adequate. Let’s say hyperparameter optimization gives you an optimal network.
Separate instances of training this same optimal network (with the same fixed optimal
hyperparameters) would provide separately trained versions of this same network. We can
use these set of the same network to create a set of predictions. What is the error
variance of this set of predictions? I would expect that this error variance is on the order
of a 5%, and hence MUCH larger than the stated precision of the RMS errors (4 decimal
places) in Table 2. Long story short, perhaps 4 decimal placed is an overkill of precision.
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