Comment on gmd-2021-21
Anonymous Referee #2

This is a model-description paper. The weather-based crop yield prediction is a critical to yield estimate and climate change impact assessment and adaptation. Focusing on leveraging the limited input features and explanatory power is a key question to be addressed when developing a yield prediction. The major contribution of the study is, according to the author, program coding by which the linear regression with the best explanatory power could be found based on exhaustive combinations of predictors. Such a practice has been widely used in developing empirical models (258 out of 362 studies, lines 78-79), except that few study have developed a formal tool. To this end, the novelty of this study is relatively weak as compared with the standard of GMD.

Major comments:

In the "Introduction" section, author firstly provide the research gap that “the entirety of crop and landscape specific weather effects is hardly captured by the existing models” but the "crop and landscape specific weather effects" is not clear because weather effect consist of extreme adverse weather effect, weather trend and fluctuation effect, and the current linear regression model can capture the effect of annual and seasonal mean weather (Peng et al 2018). More specific information about “weather effect” is helpful to emphasize the question aimed to be addressed.

If the key question is to optimize the current linear regression model, the innovation of the study is controversial. As numerous studies have found the linear regression performs not as well as machine learning algorithms in reproducing the spatio-temporal pattern of crop yield (Leng and Hall 2020, Cao et al 2021, Cai et al 2019, Zhang et al 2020), I think optimized current linear regression is not able to improve the yield prediction accuracy significantly. Thus, I suggest to revise the research gap.
After introducing the research gap, nine questions related to yield prediction were provided but the key question aimed to be addressed in this paper is still not clear for me. Also, I think the literature review is not strongly associated with the question this paper intended to address. This study focused to on weather-based yield prediction but there were papers uniting remote sensing data and weather data to predict yield, which may be related to the question 4 but considering two much non-meteorological factors will departure the goal of weather-based yield prediction.

In the “Materials” and “Method” section, it is necessary to provide some information about the weather relevant covariates and their correlated relationship with crop yield, which can help us understand the primary response of crop yield to climate change established in the model.

Reproducing the impact of climate extremes is becoming increasingly important in yield prediction models. As the weather data are monthly, I wonder whether the ABSOLUT model can predict the effect of climate extremes, which is a major source of yield loss in Europe (Trnka et al 2014). From the results of Figure 5, the predicted model underestimates the impact of drought in Northern Germany and the district-level performance is not good.

The comparison of other prediction approaches should not be limited to the yield forecast in Germany but some other yield prediction across the major breadbaskets of the world (Cai et al 2019, Li et al 2021), making the readers understand whether the ABSOLUT is an advanced yield prediction method across the globe. Also, more information about uncertainty of the model should be addressed.

Specific comments:

Line 22: the full name should be added when the ABSOLUT first mentioned.

Line 26: the equation of the ABSOLUT should not be moved to “Method” section.

Figure 2 can demonstrate the model performance at country level but why not provide the results of maize simultaneously.

Line 160: why use some ellipsis?
References


