Response to Comments

Referee #2

I really appreciated the insights provided on this fascinating and important part of the world, and thank the authors for the informative perspective on the challenges faced by the region. I feel the model as presented here could be a useful step towards developing stronger insights on the systemic controls relevant for future development and policy decisions. That said, I unfortunately do not feel the paper is ready for publication in GMD, as it does not sufficiently document either the underlying assumptions nor the mathematical construction of the model and presents some poorly-supported conclusions. I would encourage the authors to undertake a major revision that more rigorously describes the model, and which provides robust insights - which I suspect may have to do more with the identification of important questions, rather than answers.

= Shortcomings in the model description =

I can certainly empathize with the authors regarding the challenge of appropriately documenting a model with such an ambitious scope. The model addresses many sectors, including many mechanistic linkages, and thoroughly documenting all of these is a very large task. But it still feel it is necessary, in a model-description journal such as GMD, to include the most important equations and parameter values. There should also be some discussion of the theoretical basis underlying the equations, as well as documentation of the source and/or justification of parameter values. I recognize that many of this may be present in the ANEMI documentation, but given the number of changes that appear to have been made from the global ANEMI model to this regional version, I think it’s preferable to repeat the information rather than risk ambiguity.

- The authors appreciate your comments. we have added a new section describing the new aspects of the model in detail (Population, Food, Energy, Water, and Fish Sectors). Please see Line 1094-1292.

In this new section, the stock and flow diagrams are presented, the equations and their underlying theoretical basis are discussed, and the parameters and their associated
The paper currently relies on a non-peer reviewed report (Jiang and Simonovic, U of Western Ontario, 2021) as the source of all model equations and parameter values, but even there - although the equations are given - the conceptual reasoning is often cursory or absent. Table 5 of the model description report (Jiang and Simonovic, 2021) provides an illustrative example. The table lists 27 parameter values used in the Energy sector. There is no explanation of where these values came from, what degree of uncertainty is associated with them, or how the results might be altered across reasonable ranges in their values. There is a parameter sensitivity section included in the report, which is helpful, but only some parameters are tested (with no justification for how they were selected) and they are all varied by only +/-10% with no explanation of why this would be a reasonable range.

- The authors appreciate this comment. In the new section which describes the new aspects of the model, we have discussed the model equations and their underlying theoretical basis, and referenced model parameters and their associated sources. Please see Line 1094-1292.
- In this new revision, we have included a parameter sensitivity discussion section (Please see Line 1333-1350). Justifications for the selected parameters are provided. We did not vary each parameter separately, for simplicity we vary all the selected parameters by a fixed variation range and include two scenarios: mild variation scenario (parameters are varied by -10% ~ +10%) and extreme variation scenario (parameters are varied by -50% ~ +50%).
- The aim of sensitivity analysis is not to validate the parameters used in the sense of how well they represent the real world. It only provides confidence in the model (whether the main state variables will exhibit alternative behaviours).

More robust conclusions =

It is not clear to me that the model has much predictive skill. The ‘validation’ of the model simply compares a few observed and simulated variables, all of which follow what is close to a linear trend. Given the very large number of degrees of freedom provided by all of the uncertain parameters, I find it very unsurprising that the model fits these variables - which I presume were used in the training dataset in order to tune the parameters. A true test of predictive capacity would require a more complex pattern against which to test (straight lines contain very little information) that was not used for parameter selection.

- It is worthwhile to mention that ANEMI_Yangtze model is not meant to predict the future for the development of the Yangtze Economic Belt. Instead, it aims to help understand the behavioural consequences of various policy options. The absolute values are important, however, the emphasis here is on the model behaviour so that we can analyze the feedback mechanisms that are driving the model to future states.
- As for the validation, the system dynamics simulation modelling approach is often used to analyze complex and interlinked systems that could include social elements or decision-making processes that can be more abstract or where a high degree of uncertainty exists in measurements. That is why in the field of system dynamics simulation, true validation and verification are deemed impossible.
- Unlike the global scale research, there are many available projection results to compare. For the Yangtze Economic Belt, research is rare, projection comparison is not available right now. So we only compared modelled variables to historically observed data. To build more confidence in our model structure, we also conducted the sensitivity analysis. Please see Line 1294-1350.
I also don’t see much of interest in the future projections - either they are linear projections of historical trends, or they follow the population trend, which is determined almost entirely by the effect of the 1-child policy. These may be reasonable, but what is learned about the system dynamics from this approach?

- As the focus of this paper is the model description, a comprehensive policies application is beyond the scope of this paper.
- In this revision, we have added a new S_energy scenario in which the impacts of shifting energy consumption patterns on the Belt’s system dynamics was analyzed thoroughly. Please see Line 1351-1457.

In addition, I fail to see sufficient report for three points identified as conclusions:

- the identification of the cross-sectoral interactions and feedbacks involved in shaping Yangtze Economic Belt’s system behaviour over time

 -> I did not see any rigorous test of cross-sectoral interactions and feedbacks with data. Rather, the model construction proposes a set of interactions and feedbacks that reflect the ideas of the model builders: the results follow directly from the modelers’ assumptions.

- The identification of the feedbacks within each sector that drive the state variables in that sector

 -> Again, these are proposed by the model builders, rather than objectively identified.

- the explanation of the theoretical and mathematical basis for those feedbacks.

 -> The mathematical treatment of the feedbacks is only provided in the UWO report, as mentioned above.

- We value your comments and have rewritten the conclusion and discussion sections. Please see Line 1458-1573.

I think that the manuscript could potentially be publishable if the authors provide a more useful description of the model that follows the GMD guidelines. The conclusions should also be reframed to reflect the actual results of the modeling study, rather than restating the assumptions.

Additional comments

- Section 2.1 provides an enthusiastic description of the qualities of the region, but I do not feel these are necessary, or that they add to the insights of the paper and would therefore suggest that this section be removed.
- The authors appreciate this comment and have removed the description of the qualities of the region.
- What evidence is there that riverine N and P levels have a significant impact on human mortality?
- There is a lot of research published on water pollution’s impact on life expectancy. However, there are no references that are directly describing riverine N and P levels’
impacts on human mortality. In our work the N and P levels are used just as indicators of water pollution.

- The paper would also benefit from a careful proofreading by a fluent English speaker, as there are a number of missing articles and awkward phrasings.
- The authors did their best to improve the language use.