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This paper presents a novel method for statistical downscaling leveraging the recent
literature on neural processes, or more specifically, convolutional conditional neural
processes (ConvCNPs). The authors present comprehensive experimental results for
downscaling temperature and precipitation based on the well-established VALUE
downscaling intercomparison framework.

Neural processes were undoubtedly a significant step forward in the field of probabilistic
deep learning, and their value for the task of statistical downscaling is quite clear. Thus,
the authors’ work absolutely represents an important contribution to the literature and
provides ample motivation for the continued investigation of ConvCNPs for downscaling,
as well as related tasks in the future. The paper is also generally well written and the
results are clearly presented.

However, despite its strengths, I do not think that this work is ready for publication as
submitted. The literature review is insufficient and omits very relevant recent works in the
field, e.g [2,4,7,8,9]. As a result, the authors significantly overstate their contributions on
several occasions, in particular with regards to multi-site downscaling and generalization.
Even worse, they misrepresent the current state of research on applications of deep
learning in downscaling as somehow pessimistic, drawing a questionable contrast between
the reported success of their method and the results of prior work. In fact, numerous
authors have had success in applying deep learning to statistical downscaling tasks in
recent years (see other references); thus the statement “...previous work [suggests] that
little benefit is derived from applying neural network models to downscaling…” is, at best,
misleading in the broader context of the literature.

Similarly, the repeated claim that “existing downscaling methods are unable to handle
unseen locations” is not strictly true. It is typically possible, though not always effective,
to train a downscaling model on one location and test it on another, provided that similar
low resolution predictors are available. As noted in [1], convolutional neural networks are



already well equipped for this when trained with data from multiple sites since they tend
to learn more spatially invariant features. Transfer learning is also possible with other
deep learning methods, as very recently demonstrated by [10]. ConvCNP may still
generally be better, but the experiments presented by the authors do not show this. They
only show ConvCNP is superior in comparison to a constructed Gaussian process
interpolation baseline.

This brings me to the last major issue. The experimental analysis, while otherwise fairly
rigorous and well designed, has one significant weakness: it does not, as far as I can tell,
compare the authors’ proposed ConvCNP method to any other deep learning methods
recently proposed in the literature, including those that they cite such as the CNN
architecture proposed by Baño-Medina et al. While this is not necessarily an absolute
requirement for this paper to be a valuable contribution, it is at odds with how the authors
seem to want to place their work in the context of current research. The authors suggest
in sections 1, 2, and 6 that their approach is superior to existing deep learning methods.
While this indeed may be true, it is not supported by their current results. I suggest that
the authors should either add one or more existing deep-downscaling methods to their
experiments, or re-frame their work and reduce the scope of their claims.

In summary, while the authors’ work is undoubtedly a valuable contribution, the current
presentation and framing within the context of the literature has significant problems.
There is also a lack of much needed detail in the description of the ConvCNP model. The
paper would benefit from a description which highlights step-by-step the similarities and
differences of their architecture with the original ConvCNP architecture described by
Gordon et al, as well as with other similar architectures like the ones described by Baño-
Medina et al.

I will summarize my remaining technical comments by section. I look forward to seeing
the authors’ comments and revisions.

Section 1

- Similar to what was mentioned previously, the statement “there has been debate as to
whether deep learning methods provide improvement over traditional statistical
techniques such as multiple linear regression” is perhaps overly pessimistic. There has
been plenty of work now that clearly establishes the value of deep learning in statistical
downscaling. Citing just two papers which happen to show somewhat mixed results in
some cases comes off as a bit disingenuous to anyone who is familiar with the literature.

- “The second limitation common to existing downscaling models is that predictions can
only be made at sites for which training data are available.” Again, this is just simply not
true. Nothing stops you from applying a model trained on location to another location
where low-resolution predictors are available. How well it generalizes depends on the type
of model used (e.g. a dense neural network will probably overfit) and geographic



similarity. Where input or output grid interpolation is necessary, it is true that this can
introduce additional error, but it is still certainly possible to generate “off grid” predictions.

- It would be helpful to provide precise definitions for “on-the-grid” and “off-the-grid” in
the context of downscaling.

Section 2

- “ψ_MLP is a multi-layer perceptron, φ_c is a function parameterised as a neural network
and CNN is a convolutional neural network.” This sentence is a bit confusing. MLPs and
CNNs are both types of neural networks. So you should be similarly more specific with
what kind of neural network parameterizes φ_c.

- The definition of φ_c given in step 2 does not appear to be a neural network but rather a
standard squared exponential kernel. The h term is produced by the CNN, but this was
discussed separately. You should clarify if and where an additional neural network is used
here (and what the optimized parameters are).

- The EQ summations are missing upper bounds. There must be some finite limit to the
values of m,n computed here. Probably it is bounded by the size of the input (reanalysis)
grid, but this should be stated explicitly as it has very significant implications on runtime
complexity.

- It's not immediately clear why the EQ kernel is justified in this context. Is geographic
proximity really that reliable a marker of similarity? Very distant regions can be similar
and neighboring regions can be very different. Perhaps such distinctions are learned
implicitly by the encoder. But regardless, a brief discussion of this question would be
informative.

- “parameters at each target location θ” → “parameters, θ, at each target location"

- “Formally, PP downscaling is an instance of a supervised learning problem to learn the
function f in equation 1. Approaches to learning such a function have traditionally been
split into two categories: …” The following statements make it sound like PP downscaling
methods are always either neural networks or Bayesian, which is not true and probably
not what you meant. Perhaps clarify whether or not you are talking about deep learning
methods specifically (though, this would also not be true, as Bayesian DL methods have
also been proposed [9]).



- In section 2.1.1, it’s not explicit how the temporal dimension is handled. Is a separate
distribution generated for each time step at each location? Or does each location get just
one distribution from which samples are taken for every time step? Maybe specify a time
index in the notation (at least initially).

- Maybe I missed it, but I don’t think the ConvCNP and NP papers make any mention of
using non-Guassian likelihoods like the Bernoulli-Gamma used here. It might be worth
highlighting where this fits into the theoretical framework.

Sections 3 and 4

- Add units to the captions or y-axis of plots.

- MAE and bias tend to be tricky metrics for precipitation due to the heavy tails of the
distribution and the prevalence of zero values on dry days. How is this handled here? Are
they only calculated on days with precipitation?

- It would be nice to see the results for SDII and R01, space permitting.

- As mentioned by the other referee, KDE plots are inappropriate for the PIT in figure 10,
as can be seen by non-flat appearance of the uniform distribution. Q-Q or P-P plots, or
even just ROC curves, would be more illustrative. See [9] for examples of evaluating
calibration on downscaling precipitation. I would advise against the idea of using a
statistical test for uniformity on the grounds that statistical tests are generally somewhat
uninformative and typically rely on arbitrary thresholds and questionable assumptions. A
simple visualization is sufficient.
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