
Geosci. Model Dev. Discuss., referee comment RC3
https://doi.org/10.5194/gmd-2020-391-RC3, 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Comment on gmd-2020-391
Matt Hall (Referee)

Referee comment on "dh2loop 1.0: an open-source Python library for automated
processing and classification of geological logs" by Ranee Joshi et al., Geosci. Model Dev.
Discuss., https://doi.org/10.5194/gmd-2020-391-RC3, 2021

Thank you for the opportunity to review this paper. It's good to see a case study applying
open source tools to a common problem in subsurface — the extraction and regularization
of data from open data stores. And it's fantastic to see reproducible research being
produced and documented for the community. I wish more research in our field followed
your excellent example.

I am recommending 'major' revision, but most of the revision that I believe the
manuscript could benefit from is simply reducing the amount of content. That is, I don't
think there's new work to do, or that the content needs many changes per se. (Though
there are a couple of issues in the code that need to be sorted out.)

I have read the other reviews and agree with their comments. I don't think what I have to
say is substantially different. In particular, I think we all agree that there is a useful and
interesting contribution here.

General remarks

The paper seems long. The length, and difficulty of feeling out the structure of a long
paper, probably led to a feeling of confusion about whether I was reading a geological
case study, a paper on a new approach to ingesting data, or the documentation for a
software package. Perhaps the manuscript is trying to do too much? I wonder if you could
split it into pieces? For example, move the more prosaic stuff (lists of tables, etc) to the
docs; describe the more technical language modeling piece in a short nerdy paper about
that; and present the case study as a short geological success story?

If the authors and editors feel a long paper is justified, then my suggestion is to be extra
careful about the outline of the paper, so that a person knows what aspect each chunk of



the paper is addressing.

Compounding the length is that there's quite a bit of redundancy between text, figures
and captions. Figure 9 is an archetypal example of this. I think the caption (which I cannot
parse) essentially spells out the diagram (which I cannot read very well), and virtually all
of the data is also written out in sections 3.1 to 3.3. My advice is to frame the ideas with
the text and put all the details of table names and data in the figure, which should barely
need a caption.

Some pieces seem better suited to the tool's documentation. Appendices B and C probably
don't need to be part of a paper. Similarly, I think detailed descriptions of tables are
clogging up the text and getting in the way of the reader. Standard measures like
precision and recall, or string matching statistics, probably don't need to be described in
detail. 

Detailed remarks

Title: Python should be written with an uppercase P.
Abstract: I'm not sure you need the first paragraph; it's introductory material. If you
want to motivate the problem, I think you can do it in a sentence (the second sentence
captures it for me).
Line 12: surveys, textual (no 'r')
Line 15: hundreds of
Line 19: replace 'that provides the functionality to extract...' with 'for extracting...'
Line 23: 86%
Line 51: You want spaces after all your semi-colons.
Section 2: I suggest sticking to sentence case for your subheadings; at least make
them all the same.
Section 2.1, Conventions: The font is called Lucida, not Lucinda. I like the idea of a font
convention, but if you're going to use one it is important to be consistent... and being
consistent pretty hard. E.g. line 174: collar should be a table name, I think? Line 217:
are these tables? Line 225: dh2loop should be italic.
Lines 166–184: This paragraph is really hard to parse. I think the reader may start
wondering if they need to know this information. If the info is important, I think you
can let Figure 2 do the work.
Line 280–295: Similarly, I think you're just describing Figure 4.
Sections 2.4.1, 2.4.2, 2.4.3: This feels like documentation.
Lines 419–440: There is a lot of information here; I feel it is perhaps best suited to
documentation.
Table 1: Not sure what to make of this. What do the checks and x's mean? What is the
score? Why is one row bold?
Sections 3.1, 3.2, 3.3: See my earlier remarks about these paragraphs vs Figure 9 and
its caption.
Table 2 and Figure 10: I find these hard to get insight from.
Confusion matrices: There are a great many data tables here but I am unsure what to
do with this information. I see that there are a lot of under-represented labels (low
support). The only reference I could find to this problem mentions normalizing the



accuracy, but this doesn't really solve the problem, it just makes the confusion matrix
colourbar fit better. So you're still unable to balance precision and recall (with small
support, one of them is probably going to be bad). I'm not sure what you could do
about it, other than get more data, but it might be worth mentioning.

Remarks about code

There are some problems with the licences on some of the code you are using.

QDriller (https://github.com/valheran/QDriller) is licenced under the GPL, which is a
copyleft licence. This means that if you use it then your entire project must be licenced
under the same (or a compatible) licence. You are not allowed to use GPL'd code
under an MIT licence. So you have a few options:

If you keep that code as-is, you must licence your entire project under the GPL.
Ask the original author to grant you permission to re-use the classes you need under a
more permissive licence. (Ideally, it would be, say, LGPL and a completely separate
library that you could simply depend on, without copy/pasting the code across.)
Rewrite this functionality from scratch.

GeoVectoLitho (https://github.com/IFuentesSR/GeoVectoLitho) is not licenced, as far as
I can tell. Normally that would mean that you cannot use it without written permission
granting you some rights. So make sure you have written permission to place it under
your MIT licence, or you could ask the authors if they will consider an open licence. At the
very least, you need to make it clear that the mlp.py module is based on work that is 
copyright of those authors and explain the terms under which you're using it. You should
probably also exclude it from the MIT licence so that nobody comes along and picks ut up
thinking it's FOSS.

In each of these cases, if you cannot find a way to 

The Where to start instructions on the repo need VTK, folium and ipyleaflet adding to the
installs. You could just tell people to install everything in requirements.txt with pip install
-r requirements.txt. After that the notebooks ran for me (though I didn't run them all right
through).

In Notebook 0, the map did not appear; I didn't try to figure it out. Enabling the extension
didn't help. (I'm on a Mac, Chrome browser.)



I'm not sure these comments should form part of a peer review. If you don't plan to
maintain this library into the future, you can probably just ignore all this. But in case it's
useful:

I strongly recommend writing docstrings for all of your functions.
You should write tests for your functions. "Untested code is broken code."
You can remove components of the standard library — sys, math, re, time, itertools,
etc — from requirements.txt. These are included in every Python installation.
I advise against hard-coding the file encoding in your functions (with encoding =
"ISO-8859-1") because this seems like something another person is quite likely to want
to change, e.g. if they have a UTF-8 encoded file. You should expose it as an argument.
The same goes for database connections and other things another user might want to
change.
You should delete unused code, rather than commenting it.
I'm sure you know about geopandas already, but it seems like it would be useful in
your project.
Note that PyProj emits a warning in Python 3.8+ FutureWarning: '+init=:' syntax is
deprecated.
I don't know if psycopg2 connections or cursors are compatible with Python's context
manager (in which case you should 'with' blocks for them), but even if they don't you
should put them in try-finally blocks to ensure they get closed no matter what happens
in the runtime. 
I recommend using a linter like flake8 to find things like multiple or redundant imports
(e.g. you import numpy three times in dh2l_db.py). It will also help you adhere more
closely to the PEP8 standard, which will make your code more readable and reusable.

Overall, the code has a non-Python feel to it (I don't know Fortran, but I've read a lot of
code from geophysicists and they often write code like this!). Patterns like functions
mutating global variables are not common in Python. Typically, one would pass the
variable in to the function, then return them to the user (these are so-called 'pure
functions'). You will find this easier to maintain. It feels strange to me to run a function
like dh2l.litho_dico(litho_dic_file) and not have something (like a new DataFrame)
returned to me.

In summary I think dh2loop is an interesting and useful project that might help
others pre-process data for machine learning and other kinds of modeling. I
believe a shorter paper will have more impact. And there are some licensing
questionmarks that need addressing.

I hope you are able to push this work forward and wish you the best of luck with the tool.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

