Thank you very much for your time and further comments, which will help us improve the manuscript substantially.

First, we totally agree that streamflow is important for river-oriented CAMLES-type datasets. Your comments reminded us that for lake-oriented datasets, the data of lake area, water level and volume should be added during our revision, which will make the dataset more comprehensive. These lake-specific data will also make our dataset different from other CAMLES-type datasets.

We acknowledge the CAMLES-type datasets and papers are very important, and the related citations will be added during revision.

Secondly, you attributed our dataset to a CAMLES-type dataset, which means the amount of our work should be similar to other CAMLES-type datasets, especially considering that we did not use existing code to generate the dataset as there is no existing open-source code for the delineation of nested lake-catchments (including the delineation of full lake catchments and inter-lake catchments, the construction of topological relationship among lakes/lake-catchments, and the tracing of flow path among upstream and stream lakes; as shown in Fig.3 of the manuscript). Instead, we developed a software using the C and Python programming language to implement the above-mentioned functions, and the source code are open (https://github.com/LoserOne-ovo/basin_delineation).

We guess that you must be an expert on geospatial techniques, so you think the related work was relatively simple. Actually, for the researchers who are not experts on geospatial techniques but need catchment-level attributes, it is a tough task to construct such datasets. The CAMLES-type datasets you mentioned and our dataset are of great value, especially for such researchers. Therefore, in our opinion, the contributions of this study and the published CAMLES-type datasets are mainly from the perspective of novel datasets rather than novel methodology.

Moreover, we want to reemphasize the importance of our study. We think the criterion
for whether a work should be published is not the how easy or hard it is, but the
significance of the work to the community. We appreciate that you recognize we
have constructed the first dataset of lake-catchment characteristics on the
Tibetan Plateau. This dataset fills an important dataset gap and provides
fundamental information for at least two types of studies on the Tibetan Plateau: 1)
Spatial prediction of lake properties. As we all know, in situ measurements of lake
properties (e.g., sedimentation rate and organic carbon content) are limited on the
Tibetan Plateau due to harsh working conditions and logistic difficulties. This dataset can
be used as environmental factors to predict these properties in unsampled lakes. This is
important for research at the regional scale. 2) Hydrological modelling of lake catchments
based on lumped hydrological models or machine learning methods. This type of studies is
similar to the main aim of CAMLES-type datasets, but the target variable is not streamflow
but lake area, water level or volume. Therefore, we think our dataset did make a
substantial contribution to the hydrology, limnology, and cryosphere community.