Comment on essd-2021-318
Anonymous Referee #2

The manuscript is generally well written and clearly presented. However, its research outcome (i.e. the impact of meteorology and regional sources on air quality in Buenos Aires, Argentina) is not new. It should investigate the interactions between input variables to understand more about Random forest model. I do recommend publishing this work if the authors can solve my major concerns as below:

Major concerns:

1. **Selection of explanatory variables:**

1.1. Table 3, line 200-205: Air quality strongly depends upon boundary layer height and long-range transport. Why were these variables not included in this study as input variables in the model? Please refer to a reference by Shi et al. 2021 (Science Advance, Vol 7, Issue 3, "Abrupt but smaller than expected changes in surface air quality attributed to Covid-19 lockdowns").

1.2. Could the author explain why the cho CO, NO as explanatory variables for NO2? CO and NO were modelled from t2, rh2, U, V and gasoline diurnal patterns, so I guess the author also can model NO2 based on these variables. Similar questions for explanatory variables for SO2 and PM10, and O3.

1.3. In the model of NO2, did the author investigate interactions between input variables such as NO with t2.
1.4. In terms of O₃, it strongly depends upon atmospheric temperature. Why does this variable not be included in your model?

2. Testing dataset:

2.1. Figure 2, Line 189: What criteria do authors select testing dataset based on (i.e. 2 weeks data before lockdown?)

2.2. In my opinion, the 2-weeks data for testing data sets is too short. Therefore, authors should do a model performance for at least one month before and after the lockdown/partial periods.

Minor comments:

3.1. Table 4: I think author should include the r value between model and observation rather the r-value for diurnal cycle (r-dc)

3.2. Table 5: In BLD, it should include concentrations of pollutants between observation and model.

3.3. In discussion: Authors should plot the dependence of concentration of pollutants on meteorological conditions.