This paper by Loveday et al presents a method to estimate in situ net primary production based on autonomous gliders deployed for 17 months during the AlterECO project, and the subsequent data set.

I found the manuscript well written and clearly explained. In particular I appreciated the discussion about the different methods to correct non-photochemical quenching, their comparison and the discussion about the reason why a method clearly outperforms the other ones.

I believe this data set is relevant for the community and important as well from a methodological point of view. Therefore I recommend the manuscript to be published in Earth System Science Data after some minor revisions.

Comments:
Without being an expert of the field, I am reflecting on the relevance of such a method for the open-ocean domain. I would like this question to be tackled in the manuscript in order to provide a generalizing view of the method. Some work on existing autonomous platforms (Argo floats, glider) exist (eg Lavigne et al., 2012) to correct in situ fluorescence with surface satellite chlorophyll-a measurements. Could such an approach be used to constraint the glider based chlorophyll-a data? Would it be beneficial in the present case? Would another method for correcting the quenching perform better than the one used in the present paper?
Technical corrections:


l99: Is the 151 points correspond to a particular physical scale?

l154: (Saulquin et al., 2013)

l158: (Lee et al. 2007)

l354: while discussing limitation of the method, the case of offshore waters could be also discussed regarding the application of a similar approach to compute NPP estimates, and the required potential tuning of the method.