Comment on esd-2022-7
Anonymous Referee #2

Referee comment on "An updated assessment of past and future warming over France based on a regional observational constraint" by Aurélien Ribes et al., Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-7-RC2, 2022

Title: An updated assessment of past and future warming over France based on a regional observational constraint

Authors: Ribes et al.

Summary:
This paper assesses the past and future warming over France at the regional scale. One highlight of this paper is about the usage of Kriging for climate change, a method based on Bayesian Statistics, to get the posterior estimation of the projections after "assimilating" observations, which should substantially reduce the estimation uncertainties. As a researcher working on data assimilation, it is very inspiring and enlightening to see how data assimilation methods can be used for climate projections. The paper is well-written and clear. It would be great if the authors can show more details about the Kriging for climate change (KCC).

Recommendation:
Minor revision
Major Comments:

- More detailed procedure describing the KCC is needed, which can be put in the appendix. Especially how you set the prior covariance for \(x \) in eq.(2). You mentioned at Line 150 that “\(\mu_x \) and \(\Sigma_x \) are estimated as the sample mean and covariance of the CMPI6 model forced responses.” But how do you calculate \(\Sigma_x \) exactly? How does \(\Sigma_x \) look like? For data assimilation, the setting of prior error covariance requires a lot of efforts. What’s the dimension of \(\Sigma_x \). Is it diagonal or block diagonal? Does Kriging requires the calculation of inverse of \(\Sigma_x \)?

- You mentioned near line 130 that “\(x \)…where each element is an entire 1850-2100 time series of the forced response.\”, but what is the exact dimension of \(x \)? If \(x \) is large, how to you invert \(\Sigma_x \)?

- Near Line 120: what’s the exact dimension of your vector \(y \)? Near line 160, you mentioned that no measurement error is assumed. Do you mean \(\Sigma_y = 0 \)? Can you give an explanation what’s the impact of setting \(\Sigma_y = 0 \) in KCC, specially how does your influence influence the posterior?