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Many thanks to the reviewer for taking the time to assess the paper - we will respond to
comments in line.  Following the comments of this review and others, we have
restructured the paper as a review article 

The authors have assessed the application of emergent constraints to estimate

uncertainties in unknown climate projections. The recent increase in the

application of emergent constraints in Earth Science makes this a timely issue,

even more in the last year since the new ensemble of Earth system models

(CMIP6) became available. Furthermore, the manuscript is very well written and

structured, which made it a pleasure to read.

Thanks the kind comments and thoughtful review.

However, the main motivation for the paper is that emergent constraints are

used too literally (line 681) and “confusing to policymakers” (line 17). I do not

fully share this assumption and I argue below why I think this is not the case.

We argue below why we find this position to be justified.

Major comments:(1) The manuscript reads more like a review and less like a

research article. The analysis in this paper includes (a) calculating correlations

between different published variables, (b) a bootstrapping approach to exploit

previously published emergent constraints, and (c) the exploitation of two

differential equations with a random number generator to create many ensemble

members. Taken together, I cannot see how this would be a sufficiently novel

concept, idea, tool, or data given that was not previously exploited. Point (b)

somehow tests the robustness of the linear relationship. What is the advantage

of this method compared to the published measures of uncertainty (e.g.

prediction intervals, see minor comment 1). Already the published results of all

shown ECS are not different within their still relatively large uncertainties (Table

4 in Schlund et al. (2020)). So, I am wondering what additional information is

obtained by performing this bootstrapping. Point (c) seems to be a more of a

fancy way of saying that the Earth System responds at different timescales and

not just one, a well-known concept and used to calculate the temperature

response to radiative forcing changes (Stocker et al., 2013; Otto et al., 2015). It
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is therefore obvious that the 2-timescale model continues to heat although

radiative forcing stabilizes, and the 1-timescale model does not. Taken these

results together, I do not see a (novel) advance here although the Discussion

and presentation of the results is very well done. Overall a lot of times ‘may’ and

‘might’ are used indicating that this is more speculative. However, I hope that

the authors can convince me that I am wrong. If not, I would propose to make it

a review or perspective paper.

Thanks for this point. We, in fact, fully agree that the analytical aspects of this paper do
not represent sufficient quantitative advances in the understanding of combining
constraints, and are rather intended to illustrate the wider conceptual points which are the
focus of the paper (which the reviewer clearly appreciates, given the comments which
follow). Given this (and similar assessments from the other reviewers), we have requested
for the paper to be be classed as a review. In this context, we have removed the
bootstrapping analysis - given the point has been largely covered by Caldwell 2018,
Schlund 2020 and Brient 2019. 

We see the paper's novelty as a conceptual framework to assess how emergent
constraints relate to model assumptions. Given this, the toy model analysis does not
provide deep insight on the nature of ocean timescale response, nor was it intended to.
The point illustrates that if a model ensemble contains common approximations and a
small number of degrees of freedom (in this case, represented by a single layer ocean),
then strong emergent constraints can emerge which would confidently constrain the future
response to a certain value - but the constraint may be broken, or simply not exist if a
more complex model with additional degrees of freedom is used (here illustrated by a 2
layer ocean). The actual models used are incidental - they simply illustrate models at two
different complexity levels. We go in in the discussion section to consider cases where
such  common oversimplifications may exist in the CMIP class models (e.g. soil respiration-
temperature relationships).

 

Many points that are discussed here as shortcomings of emergent constraints

should, in my opinion, be attributed to the models themselves. Emergent

constraints can, by definition, only improve the model output. If the models

have structural shortcomings,

they exist in the multi-model mean and the constrained results. Emergent

constraints can thus ‘only’ improve the existing model output and cannot go

further.

We broadly agree that the key issue at hand is the structural shortcomings of the models.
However, we disagree that the ECs can 'only improve' existing model output - because of
the implied precision in the value of the true future response which arises from
considering only the error implicit in the regression relationship. An emergent constraint,
literally, proposes that an unknown quantity is constrained, unlike an ensemble multi-
model mean which just a model estimate with no pretense of precision. Thus, the
precision of the EC can potentially be over-stated through the lack of consideration of
aspects of common, oversimplified structural assumptions which create strong ensemble
relationships. As such, although the structural errors are ultimately features of the models
themselves, the use of ensemble relationships which are themselves subject to model
errors impacts directly on the 'added value' of emergent constraints.

The exchangability argument (lines 66-76, lines 296-304, lines 412-420) is thus

wrongly stated in my opinion. An emergent constraint can only say: models that

tend to simulate a large (small) variable A at present (e.g. extent of the Hadley



Cell) also simulate a large (small) increase in variable B. If, and only if, a

mechanistic relationship can be given and proven to a sufficient level, one could

conclude that if models had rightly (as in the observations) simulated variable A,

the model result for variable B would be the following. The constraint can never

overcome model shortcomings or biases that exist across the entire model

ensemble and is not designed to do that. The exchangability argument would

thus only hold if the constrained result would be considered the truth, which it is

obviously not. It is just an improved projection, but still based on imperfect

models.

This point is well taken, but contains an implicit assumption that the use of an emergent
constraint can \emph{only improve} a projection - where we would argue that ECs have
the potential to make an overconfident projection due to a consideration of only the
subset of available model validation data which was used in the EC. Fundamentally - the
structural errors have the capacity not just to impact the simulated values of A and B, but
also the the relationship between A and B - perhaps creating relationships which would not
be present in a superset of models. We have already seen that different emergent
constraints can emerge from the same ensemble with differing conclusions (e.g. the
fluctuation dissipation relationship of Cox et al 2019, and the atmospheric stability
relationship of Sherwood 2015). Either of these constraints used alone would constrain
ECS to low or high values respectively. These problems are not insurmountable - the
Bayesian framework of Williamson 2019 allow for the combination of different lines of
evidence, but enacting such a strategy requires the modeling community to engage with
(1) the independence of different constraints (e.g. Caldwell 2018) but also (2) the degree
to which common structural errors could bias A, B or the relationship between them.

Our position is thus not that the constraints have no value, rather that the common
assumption that a constraint used in isolation to constrain a projected ensemble
distribution is not justified without considering other relevant aspects of model
performance (including other ECs) and the realism of potential common structural
assumptions which may have biased or created the emergent relationship. As we argue in
our conclusions - we believe that there is a middle ground between standalone emergent
constraints, and generic model multi-variate skill scores which could allow a focus on
variables which might be of relevance to projected climate without relying exclusively on a
single relationship.

As an example, the present temperature and the leaf area index are within the

current model ensemble good predictors of future GPP (Schlund et al., 2020). By

using the present-day temperature and the leaf index, one can thus show how a

model of the same ensemble would likely simulate future GPP if it had the right

temperature and leaf index.

 

Nevertheless, if the whole ensemble would be systematically biased and missing

out an important process, like nitrogen limitation (lines 296-304), the emergent

constraint cannot assess this. The systematic bias is present in the multi-model

mean results and the constraint results and thus not primarily an issue of the

constraint but the model ensemble. However, it is equally important to mention

and assess these uncertainties when presenting mutli-model means and

constrained results.

We agree that the structural biases will impact the unconstrained model projection
distribution, including the multi-model mean. But there are two further points to consider:
(1) the multi-model mean and model distribution is not advertised as a calibrated estimate
of a specific value, together with an implicit error and (2) the added value of the emergent
constraint is also potentially subject to structural error. 



The reviewer's example considers one example of structural error (the omission of N
fertilization), and indeed - this is a case where the structural omission may create an over-
confident constrained result if used to calibrate future GPP projections (if present day LAI
simulation is a function of N-fertilization). We would argue that this is more problematic
for the EC than the multi-model mean. Using the EC to calibrate future GPP is explicitly
calibrating GPP to compensate for a missing process. This is an additional source of error
because the effect of the bias of the missing process may be different for present day and
future GPP, and therefore the constrained result stands to be confident, yet wrong. 

The use of a single metric therefore throws away any information which is not in the
constraint itself. In the reviewer's example, a model tuned to have the right temperature
and LAI may be subject to other biases (in present day GPP or latent heat flux, for
example), which would have been considered by the developers calibrating the model. As
such, the ensemble distribution of projections and ensemble mean result are of course
also subject to biases from missing process, but the models are expert tuned considering
a wide range of metrics and therefore, to some degree more robust. The use of the EC to
calibrate projections effectively allocates zero weight to any orthogonal aspects of model
performance (some of which may themselves be emergent constraints on the same
quantity in the ensemble).

To put it in Bayesian terms, the prior ensemble distribution is subject to structural errors,
but so are the relationships which provide the basis for the emergent constraint.
Therefore, the ECs have the potential to be additionally impacted by structural errors than
the unconstrained model distribution.

Overall, I think the exchangability argument is wrongly stated as the models in

an emergent constraint were never meant to be exchangeable, but observations

are only used to inform the likely best guess of a given model ensemble. Having

said this, the question remains how systematic model biases should be

accounted for in uncertainty range. When calculating the multi-model mean, the

standard deviation is often a measure of uncertainty, but this is not taking into

account biases or structural errors. So, one can argue that the given

uncertainties for a constrained result are equivalent to the uncertainties

calculated by the multi-model standard deviation.

We agree with the reviewer that the models were not intended to be exchangeable with
reality. Model developers are generally keenly aware of the approximations made in their
parameterizations. However, we maintain that the exchangeability assumption is implicit
in the use of an emergent constraint to estimate the most likely value and uncertainty in
that value. This is the view shared by Williamson (2019). 

This problem does not apply to the simple estimate of mean and variance of the original
model ensemble projections - which may be biased due to missing processes, but they are
not, themselves, uncertainty estimates in a projected quantity. ECs, however, frequently
use the error in the regression relationship to estimate an uncertainty in the projected
quantity (see Cox 2018, Varney 2019 amongst many other examples) - and this additional
step is a strong assumption, that the relationship is equally applicable to reality as it is to
the models in the ensemble. We have expanded on this point when first introducing the
concept of exchangeability in the introduction (line 94).

Lines 412-420 make the point very clear. The current knowledge of the Earth

System is as good as possible implemented in the Earth system models. Some

processes known to be missing or wrongly represented, others are probably

missing but not known yet (like the ocean mixing in the 1-timescale model). 

However, these missing processes are strictly speaking a problem of the models.



If we had no knowledge of the ocean’s importance (1-timescale model) and only

lambda would be of importance, we had implemented no ocean in our models.

Thus, the relationship would resemble the red points in figure 2e,f with model

lambdas being different because of different atmospheric model components. By

applying the hypothetically ‘observed’ lambda, we would reduce uncertainties

related to the atmospheric model. We would, however, not find the right results

because all models are missing the ocean component. Nevertheless, given the

assumed hypothetical current state of knowledge (ocean is not important), and

the consequent hypothetical models (no ocean), our knowledge of lambda and

the emergent constraint would still ‘improve’ model projections under this

assumption.

Agreed, this broadly represents our intended illustration with the simple model - that the
'improvement' in this case would give a confident, but ultimately incorrect, constraint on
the future dynamics of the model.

Following this argument in its strict sense, would lead to the conclusion that

models cannot be used because important steps might be missing and NOT that

emergent constraints cannot be used. The ‘assessment of underlying model

assumptions’ (line 436) should always be done if model output of any type is

published, constrained or not constrained. If I understand the conclusion in lines

676-678 right, the authors argue that CMIP models are a comprehensive

representation of the Earth System. Following that line of argument, we should

not use them either to make projections of climate change at all? Or under which

conditions?

Here we differ from the reviewer. The single layer ocean is useful for some applications. It
can capture some of the first order dynamics of the climate system given appropriate
parameters. But the nature of that calibration matters. The Emergent Constraint approach
takes an extreme position - that only one aspect of the model should be used in tuning
(that which is correlated with the future response). This results in a very tight constraint
on the single layer model's parameter space, but because the relationship itself is biased
by the structural errors in the model - the constrained value is incorrect.

A more robust calibration strategy is to use all available relevant data to calibrate the
model (e.g. the entire historical timeseries, paleoclimate records etc). In this case,
individual aspects of the model error would still be subject to structural deficiencies, but
trade-offs between tuning to different observations would reduce the degree to which the
parameters are constrained (see Sanderson 2008 for an example of this in ESMs).

In short, we agree with the reviewer that all model outputs are subject to structural error.
But we argue that the sole reliance on projection calibration from a single ensemble
relationship in ECs introduces a particularly acute exposure to specific aspects of model
error which will invariably lead to overconfident constrained projections.

3) The manuscripts title, abstract, Conclusion (and partly Introduction) suggests

that emergent constraints across the field of Earth Science are addressed.

However, throughout the manuscript it becomes clear that the focus of the

manuscript is on emergent constraints of the Equilibrium Climate Sensitivity. In

addition, other constraints, such as for the Transient Climate Response and the

land carbon cycle, are (briefly) discussed. However, constraints for the ocean, a

major part of the Earth System, are not discussed at all. Thus, the title and

abstract are highly misleading. I would suggest to either clearly indicate that the

manuscript is on emergent constraints on ECS and only discuss ECS constraints

or add examples of ocean constraints and largely expand their exposition in

section 5. Examples for emergent constraints in oceanography would be: Kessler



et al. (2016), Kiwatkowski et al. (2017), Goris et al. (2018), Terhaar et al.

(2020a), Terhaar et al. (2020b). The list is very likely not sufficient. 

This is a fair point. Our objective is certainly to talk about the methodology of emergent
constraints in general - the key conceptual arguments are not specifically associated with
climate sensitivity. We do not seek to exhaustively review or list every published
emergent constraint here (this has been done elsewhere, e.g. in Brient 2020, Hall 2019 or
Williamson 2018). But - the reviewer is correct that an ocean-specific example would be
desirable to illustrate relevant structural assumptions for different broad genres of
constraint. We have added a new section 5.3 on constraints on future ocean carbon
uptake. Many thanks for the references.

Furthermore, the ocean is ignored in questions about the ECS or atmospheric

CO$_2$ (point 6), although the 2 timescale models clearly indicate that the

ocean is important.

Point well taken. We have revised the case studies to include ocean processes at relevant
points.

4) I am not a statistician, but I have strong concerns regarding the application of

statistics in this study. First, I disagree that the Sherwood “D” and Cox

constraints are correlated (Line 141). A r (if it is r) of 0.31 is a r2 of less than

0.1. A p-value is not given but I do

not expect it to be supportive of a correlation. Even for Lipat and Qu, the r2 is

‘only’ 0.33. Please do not use the term correlated if the variables are not

statistically correlated.

Second, the two constrained ECS do not disagree (Line 142). Sherwood et al.

(2014) find an ECS likely at 4°C with 3°C as a lower limit. Cox et al. (2018)

report 2.8 ± 0.6 °C. Within the uncertainty ranges, they agree with each other.

Lipat et al. (2018) and Qu et al. (2014) do not even give a constrained result for

ECS as far as I can see this. But for this argument we can use the Schlund et al.

(2020) estimate for the EC from Lipat et al., which is 3.0 ± 0.8 °C and try to read

the result for Qu et a. (2014) from the corresponding subpanel, leading to 3.5 ±

0.4°C. These two constrains do also agree. The following paragraph paragraph

and conclusions are thus wrong.

The revised paper has removed this section entirely - given the paper was already long,
and the assessment of EC correlation has been well discussed by Caldwell (2018)

5) The authors often use the argument that emergent constraints might be

confusing to policy makers or other people. Furthermore, they say speak about

their ‘literal interpretation (line 196). I can see no evidence supporting this

claim. On the contrary

most emergent constraints only give a ‘likely’ estimate (summarized in table 4 in

Schlund et al. (2020)) and even if all ECSs were used to give a best estimate

with an uncertainty range, all ECS would agree. Thus, these ECS seem to be used

to exclude outliers and not

give a narrowly constrained result. Given that they all agree, I do not see the

possible confusion.

Thanks for this point. We have removed the specific references to climate policymaking.
We would counter, however, that the majority of emergent constraints use probabilistic
language in their primary conclusions - but in almost all cases, these probabilities exclude



the potential for errors which are the focus of this study (that is, the uncertainty arising
from model common simplifications which project onto either simulated quantities or intra-
ensemble relationships).

6) Lines 442-446: The authors claim that the differences in atmospheric CO$_2$

are caused by the land carbon sink, whereas Hoffmann et al. (2014) clearly state

that “Weak ocean carbon uptake in many ESMs contributed to this bias, based

on comparisons with observations of ocean and atmospheric anthropogenic

carbon inventories.” While the land carbon sink is very uncertain, the ocean has

been found by Hoffmann et al (2014) to cause the bias. Please correct your

paragraph accordingly. 

Totally agreed. We apologise for the land-centric discussion and have updated the
paragraph accordingly.

I would also argue that the bias-persistence in the too small ocean carbon sink

(Kessler et al. (2016), Goris et al. (2018)) is caused by the circulation

differences and is persistent over large timescales and thus not overconfident.

The whole section should hence be replaced.

We agree with the reviewer that ocean circulation biases play a significant role. However,
we disagree that this is the sole source of uncertainty in atmospheric CO2 concentration
biases. As we discuss in the revised section - this is a trade-off between numerous
factors: ocean productivity, circulation, land carbon and concentration feedbacks and soil
temperature response. Systematic common biases in any of these aspects would qualify
as a potential structural uncertainty in future CO2 concentrations.

Minor comments:

1) Figure 1: The panels are too small and impossible to read, especially on the

diagonal. I suggest keeping y and x labels with the name of the constraint only

at the left column and the bottom line. Furthermore, I cannot understand the

added value from the bootstrapping algorithm from the manuscript. Often the

uncertainty of the fit is estimated by prediction intervals (Bracegirdle et al. 2012;

Nijsse et al. 2020; ...). To which degree and why does the bootstrap method

improve the results, or the estimated uncertainties compared to these prediction

intervals. If no improvement exist, why would you not just show the published

results (Schlund et al. 2020)? And if you recompute them, why not showing the

mean estimate + uncertainties + r2 or something similar. At the moment the

subpanels do not allow to assess the mean, the uncertainty or anything else

because they are too small.

We have removed this figure in the revised version.

2) Line 102: Table 3 is mentioned in the text before table 2.

Table 1,3 now removed. Labelling fixed.

3) Is the bootstrap approach general knowledge? If not, please consider telling

the reader how it works or give a reference.

Analysis removed in revision.

4) Lines 114-121: This is very hard to read, and I am not sure that I understand

the message. Could you try to rephrase it and make sure that the reader

understands when a combination is appropriate and when not and why?



This section has been removed in revision

5) In general: How do you define correlation (Pearson's product-moment

coefficient or something else?)

This section has been removed in revision

6) Lines 206 to 209: I do not agree with this statement. Let’s assume variable A

(present) is correlated to variable B (projection) across a model ensemble and

the correlation is mechanistically profound and supported by theory and

observations. If variable A is now a very complex interplay of many processes, it

could have a large inter-model spread without a lack of diversity. Thus, the

presence of an EC can be a lack of diversity or a complex interplay of different

processes. The sentence now is rather misleading.

Agreed. and again, this section has now been removed.

7) Lines 227-230: You should include Kessler et al (2016) and Goris et al. (2018)

here.

Thanks - agreed. Added.

8) Lines 250-267: You should add Terhaar et al. (2020a,b) here, although it is

not strictly a feedback process but identifying the leading order process that

describes the futureresponse.

Thanks - we agree that these are process-based constraints, we've removed the word
"feedback" from the title to allow a broader definition.

9) Lines 269-285: You should add Kwiatkowski et al. (2017) here.

Agreed, thanks.

10) Line 288-290: I again do not agree with this sentence. A set of models with

very

complicated assumptions in different processes that govern both related

variables,

variable A (observable) and variable B (projected), would lead to a large spread

in A and B

and possible to a good correlation and EC.

We disagree with this. If there are a small number of parameters governing a process in
similar parameterisation schemes throughout the ensemble - the response of such models
to both historical and future forcings will be a function of that small set of parameters,
increasing the chance that an emergent relationship might be found.

Soil respiration/temperature relationships are a good example in CMIP, as we point out in
the following paragraph. A simple temperature dependency equation has good skill in
representing soil respiration in CMIP as a function of temperatures (Todd-Brown et al.
2013), and this enables strong emergent constraints on future soil respiration temperature
sensitivity such as Varney (2020). But - this simple temperature relationship also fails to
represent a large fraction of spatial variability in observed soil respiration (Todd-Brown et
al. 2013) - which is potentially attributable to the common over-simplicity of the
representation of the process in the ensemble.

Adding complexity in this case may indeed increase variance in the predictor or



predictand, but the increased number of degrees of freedom in the process representation
has the potential to add noise to the relationship between the two. However, if the
ensemble diversity can be demonstrably reduced to a single process equation with (in the
extreme case) one free parameter - responses to different forcings will be correlated by
construction.

11) Equations are not numbered}

Fixed

12) Equation on line 341 is difficult to read (latex problem?)

Thanks, fixed

13) Lines 492-499: What is the added information here? It sounds more

speculative than informative.

We've deleted this paragraph.

14) Section 5.3: Your two timescale models are constructed to make just this

point. Maybe you could use this here and emphasize hence the importance of the

ocean for long-scale warming (ECS) and point out that the difference in the

ocean may, according to your model, be responsible for the different long-term

temperature trajectories.

Thanks for this suggestion - we've incorporated this discussion as suggested.

15) Lines 537-644: I do not see from which results this conclusion is drawn.

Could you pleas just point me to it? And what other metrics are you referring to

here?

We've deleted this paragraph - as the core of the argument is more clearly repeated in the
following paragraph.

16) Lines 554-660: Please cite here the multi-variable approach by Schlund et al.

(2020)

Thanks - yes. There's also a valid point from this paper on the significance of constraints
persisting for multiple generations.
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