

Clim. Past Discuss., referee comment RC2 https://doi.org/10.5194/cp-2021-32-RC2, 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Comment on cp-2021-32

Jeremy Caves Rugenstein (Referee)

Referee comment on "Palaeo-environmental evolution of Central Asia during the Cenozoic: new insights from the continental sedimentary archive of the Valley of Lakes (Mongolia)" by Andre Baldermann et al., Clim. Past Discuss., https://doi.org/10.5194/cp-2021-32-RC2, 2021

Baldermann and co-authors provide new data from the well-studied Valley of Lakes section in central-southern Mongolia to understand the sedimentological and paleo-environments during late Paleogene and early Neogene Mongolia. The authors find that a number of paleo-environmental indicators, such as CIA, track global climate signals, but that d18O and d13C do not; they conclude that stable isotopes of authigenic carbonates in this section reflect, to a much greater extent, uplift of the Altai and Tian Shan.

I found this paper easy to read; the figures support the text, and; the paper is well-referenced. I believe this paper is appropriate for a journal such as Climate of the Past subject to minor revisions. Below, I present a few comments, which I think will make the paper more robust. Please note that I am not an expert on Ar-dating of clays; I therefore restrict my comments to the paleo-environmental aspects of the paper.

I'm curious why the stable isotopes—particularly the d13C—do not track with the weathering indices, such as CIA. The authors interpret their d13C record in terms of precipitation; strictly, this isn't correct particularly over long timescales. Rather, d13C records the balance between atmospheric CO2 and the soil respiration flux (Cerling, 1999, 1984; Cerling and Quade, 1993). Over this time frame, changes in atmospheric CO2 need to be considered. However, for most of Asia, changes in plant productivity—probably driven by changes in the atmospheric CO2 via the CO2 fertilization effect—seem to be the larger driver of soil carbonate d13C changes (Caves et al., 2016; Caves Rugenstein and Chamberlain, 2018). This is likely to have an effect on weathering, since plant-produced CO2 plays a vital role in breaking down primary minerals. Thus, it is curious why these weathering indices and d13C are decoupled, and some speculation from the authors on why would be helpful. We recently published a paper that dealt with this issue in the late Cretaceous Songliao Basin in NE China (Gao et al., 2021).

The relative lack of change in d180 is not too surprising. In such a continental, semi-arid

setting as the Valley of Lakes, small changes in hydroclimate are unlikely to produce changes in d180, given that most moisture is recycled in this setting and there is very little runoff. Such predictions for meteoric water d180 in continental settings has been detailed in a number of studies (Caves et al., 2015; Chamberlain et al., 2014; Kukla et al., 2019; Winnick et al., 2014).

I'm curious why the authors attributed many of the paleo-environmental changes to uplift of the Tian Shan and Altai mountains, rather than uplift of the Hangay mountains to the north. There is, of course, some dispute about the paleo-elevation of the Hangay mountains through time (McDannell et al., 2018; Sahagian et al., 2016) and my own work (Caves et al., 2014) suggests that the Hangay play an important role in blocking moisture to this part of the Valley of Lakes. Some discussion of why the authors have decided to attribute hydroclimatic changes to uplift of the Tian Shan and Altai versus changes in Hangay paleo-elevation would be appropriate and would be of interest to a broad swath of researchers who are interested in tectonics and paleoclimate in Mongolia.

Minor Comments:

Line 90: I think you mean to cite Xiao et al., 2010 here.

Figure 8: How is the position of the dashed yellow, vertical lines in the d18O panel positioned? For the uppermost samples, is this line placed along the minimum values because there is evidence that there is evaporative effects for the higher d18O samples? What evidence is this?

Caves, J.K., Moragne, D.Y., Ibarra, D.E., Bayshashov, B.U., Gao, Y., Jones, M.M., Zhamangara, A., Arzhannikova, A. V., Arzhannikov, S.G., Chamberlain, C.P., 2016. The Neogene de-greening of Central Asia. Geology 44, 887–890. https://doi.org/10.1130/G38267.1

Caves, J.K., Sjostrom, D.J., Mix, H.T., Winnick, M.J., Chamberlain, C.P., 2014. Aridification of Central Asia and Uplift of the Altai and Hangay Mountains, Mongolia: Stable Isotope Evidence. Am. J. Sci. 314, 1171–1201. https://doi.org/10.2475/08.2014.01

Caves, J.K., Winnick, M.J., Graham, S.A., Sjostrom, D.J., Mulch, A., Chamberlain, C.P., 2015. Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet. Sci. Lett. 428, 33–43. https://doi.org/10.1016/j.epsl.2015.07.023

Caves Rugenstein, J.K., Chamberlain, C.P., 2018. The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective. Earth-Science Rev. 185, 1129–1156.

Cerling, T.E., 1999. Stable carbon isotopes in palaeosol carbonates, in: Thiry, M., Simon-Coincon, R. (Eds.), Palaeoweathering, Palaeosurfaces and Related Continental Deposits. The International Association of Sedimentologists, pp. 43–60. https://doi.org/10.1002/9781444304190.ch2

Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71, 229–240. https://doi.org/10.1016/0012-821X(84)90089-X

Cerling, T.E., Quade, J., 1993. Stable Carbon and Oxygen Isotopes in Soil Carbonates, in: Swart, P., Lohmann, K., McKenzie, J., Savin, S. (Eds.), Climate Change in Continental Isotopic Records. American Geophysical Union, Washington, DC, pp. 217–231. https://doi.org/10.1029/GM078p0217

Chamberlain, C.P., Winnick, M.J., Mix, H.T., Chamberlain, S.D., Maher, K., 2014. The impact of Neogene grassland expansion and aridification on the isotopic composition of continental precipitation. Global Biogeochem. Cycles 28, 1–13. https://doi.org/10.1002/2014GB004822.Received

Gao, Yuan, Ibarra, D.E., Rugenstein, J.K.C., Kukla, T., Methner, K., Gao, Youfeng, Huang, H., Lin, Z., Zhang, L., Xi, D., Wu, H., Carroll, R., Graham, S.A., Chamberlain, C.P., 2021. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China. Earth-Science Rev. 103572. https://doi.org/10.1016/j.earscirev.2021.103572

Kukla, T., Winnick, M.J., Maher, K., Ibarra, D.E., Chamberlain, C.P., 2019. The Sensitivity of Terrestrial δ 180 Gradients to Hydroclimate Evolution. J. Geophys. Res. Atmos. 124, 563–582. https://doi.org/10.1029/2018JD029571

McDannell, K.T., Zeitler, P.K., Idleman, B.D., 2018. Relict Topography Within the Hangay Mountains in Central Mongolia: Quantifying Long-Term Exhumation and Relief Change in an Old Landscape. Tectonics 37, 2531–2558. https://doi.org/10.1029/2017TC004682

Sahagian, D., Proussevitch, A., Ancuta, L.D., Idleman, B.D., Zeitler, P.K., 2016. Uplift of Central Mongolia Recorded in Vesicular Basalts. J. Geol. 124, 435–445. https://doi.org/10.1086/686272 Winnick, M.J., Chamberlain, C.P., Caves, J.K., Welker, J.M., 2014. Quantifying the isotopic "continental effect." Earth Planet. Sci. Lett. 406, 123–133. https://doi.org/10.1016/j.epsl.2014.09.005