Reply on RC2
Peixin Zhang et al.

Author comment on "Low-latitude climate change linked to high-latitude glaciation during the Late Paleozoic Ice Age: evidence from the terrigenous detrital kaolinite" by Peixin Zhang et al., Clim. Past Discuss., https://doi.org/10.5194/cp-2021-108-AC3, 2021

Detailed responses to reviewer #2's comments:

Dear Editor,

Thank you very much for reviewing our paper "Low-latitude climate change linked to high-latitude glaciation during the Late Palaeozoic Ice Age: evidence from the terrigenous detrital kaolinite" and giving very valuable comments. The points raised are valid so the review provides us with the opportunity to expand our manuscript to address them comprehensively. Below we address each point individually and consider them fully resolved.

In the submission system, we cannot upload the revised manuscript. Therefore, we outline the changes we have made as indicated on the updated version of the manuscript showing marked changes (in red) as an attachment here.

We hope you find these changes agreeable and we look forwards to hearing from you in the future.

Yours sincerely and on behalf of co-authors,

Jason Hilton

Reviewer #2:

Overall, reviewer 2 makes some detailed comments on the geological context of the study but nothing that impacts the results or conclusions presented. We will reply to their comments individually below.

1. The paleogeographic context is inadequate. Fig. 1a is a cartoon with virtually no documentation of how the North China Block was positioned in the Early Permian, e.g., Liu1990 cited is a one-page comment/reply and Blakely2011 has no quantitative analysis for determination of paleolatitude, whereas Yang+Lei1987 and Zhou2002 are not readily accessible and would need to be described here for a broader audience. The authors state that the NCP was located at ~5-15°N but there could be a huge lithostratigraphic
consequence between being in the tropical humid belt (5°) and the arid belt (15°). Unless
the authors have alternative methods, paleolatitudes are based on paleomagnetism and
hence the authors might consult references to the modern paleomagnetic literature and
syntheses for the NCB and Tethyan environs in papers like Torsvik+2012 ESR or
Kent+Muttoni2020 Palaeo3.

Response: We disagree with the overall sentiment here – the information is provided is
coparable to other papers on the topic utilizing similar approaches, but if the reviewer
wants us to provide additional context, we can do that. We note this does not change the
results or conclusions presented.

We have reviewed palaeomagnetic data from the Dafengkou section in the Yuzhou
coalfield from the early to late Early Permian (including the Taiyuan, Shanxi, and
Shangshihezi formations). These data show that from the early Early Permian to late Early
Permian, the palaeolatitude change in the study area is between 11.0°N and 11.4°N, that
is, it is within the equatorial humid climate zone (Zhu et al., 1996).

Table 1 The Characteristic remanent magnetization directions, palaeomagnetic pole, and
palaeolatitude of Permian of Dafengkou profile in Yuzhou, Henan Province

<table>
<thead>
<tr>
<th>Period</th>
<th>sampling point</th>
<th>mean direction of magnetization α95</th>
<th>stability valuation</th>
<th>Palaeomagnetic pole position</th>
<th>Palaeolatitude position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (°) I (°) K (°) Plat.(°N) Plong.(°N) Dp Dm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P^2_1</td>
<td>6 143.2 -21.2 12.9 19.4 R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P^1_1</td>
<td>3 124.9 -22.0 82.1 13.7 R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P^1_9</td>
<td>9 136.9 -21.7 16.1 13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
According to palaeomagnetic data from the Dafengkou section in the Yuzhou Coalfield during the early Early Permian (P₁) to late Early Permian (P₂₁) (Table 1; see below), we determined the exact location of the study area through time and have modified this in the geological background section. We have revised figure 1, and replaced "Blake's paleogeographic map (Fig. 1a)" with the "generalized tectonic map of present-day China", and also replaced the "Palaeofacies map of the NCP during the Cisuralian (modified from Liu, 1990) (Fig. 1b)" with the "Simplified tectonic map of the present-day NCP (modified from Liu et al., 2013)". In these maps, we have added modern latitude and longitude (Figs. 1a, 1b; see below). However, this information does not affect the geological background in our manuscript. We have added a map of the facies and palaeogeographic evolution of the NCP over time from the late Bashkirian to the Wordian (~318 Ma – 265.1 Ma) in the revised manuscript (Figure 9) to provide full context on this.

The revised figure 1 is attached to this reply.

2. There is a bewildering array of regional and global stage names and fossil zonations for the Late Paleozoic but one would have to be a real aficionado to decipher from Fig. 1c where in the geologic column all the names are supposed to be: Early Permian? A very rudimentary paleogeographic map (Fig. 1b), which should at least show lines of paleolatitude, is labeled Cisuralian but that time-stratigraphic interval is not indicated in the stratigraphic column in Fig. 1b.

Response: We have added the names of geological periods (e.g., Carboniferous and Permian) in the geological column in Figure 1c (Fig. 1c; see Response 1). We have replaced the "Palaeofacies map of the NCP during the Cisuralian (modified from Liu, 1990)(Fig. 1b)" with a "Simplified tectonic map of the present-day NCP showing the location of the study area (modified from Liu et al., 2013)", but this did not affect the geological background in our manuscript. We have also added a map of the evolution of the NCP (see above) over time from late Bashkirian to Wordian (~318 Ma – 265.1 Ma) in the manuscript (Figure 9), and added the paleolatitude based on the previous palaeomagnetic data (Zhu et al., 1996; Table 1).

The new figure 9 is attached to this reply.

3. Two U-Pb dates are quoted as 270.7 Ma and 299.4 Ma based on 5-11 zircons selected from an astonishing number (1000 to 1500!) grains extracted from two levels. The technique is not described (presumably laser-ablation ICPMS) nor how the 1:100 grains were selected, or what was done with the remaining zircon grains (were they measured?). What about potential lead-loss? These dates are extremely important for the chronostratigraphy and correlation to the wider world and must be described in much more detail; the reportage of Gehrels+2020 Geochro may provide a useful example.

We have revised the text in the manuscript to read: "After crushing, grinding, sieving, and heavy liquid and magnetic separation, euhedral zircon crystals with clear oscillatory zoning under cathodoluminescence (CL) microscope were selected for U-Pb zircon isotope analysis. U-Pb dating was conducted at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing). Laser sampling was performed using a Coherent’s GeoLasPro-193nm system. A Thermo Fisher’s X-Series 2 ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas. Argon was used as the make-up gas and mixed with the carrier gas. All data were acquired on zircon in single spot ablation mode at a spot size of 32 μm with 6 Hz frequency in this study. Standard material SRM610 from National Institute of Standards and Technology (NIST) of America was used to optimize the ICP-MS instrument, and as an
external standard for determination of trace elements. Zircon 91500 was used as an external standard for U-Th-Pb isotopic ratios (Wiedenbeck et al., 1995, 2004). Plešovice Zircon was used as a monitoring standard for each analysis (Sláma et al., 2008). Time-dependent drifts of U-Th-Pb isotopic ratios were corrected using a linear interpolation (with time) for every five analyses according to the variations of 91500 (i.e., 2 zircon 91500 + 5 samples + 2 zircon 91500). Each analysis incorporated a background acquisition of approximately 20s (gas blank) followed by 50s data acquisition from the sample. Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration for trace element analyses and U-Pb dating were performed by ICPMSDataCal (Liu et al., 2008). Data reduction and concordia diagram was carried out using the Isoplot 3.0 (e.g., Lu et al., 2021a, b).

and

"In this study, zircon U-Pb age distributions are displayed and analyzed with probability density diagram, which is based on the individual ages and measured uncertainties from each sample (Fig. 3; Table S2). Sedimentary age interpretations are based on the main clusters of youngest zircon ages, with less emphasis on ages that do not belong to youngest clusters given the possibility that they are unreliable due to Pb loss, inheritance, analysis of inclusions, high common Pb, or unusual Pb–U fractionation due to ablation along with fractures (e.g., Gehrels, 2014; Gehrels et al., 2020)."

4. A thickness-age plot (with cumulative thickness scales and not simply scale also shown in the stratigraphic diagrams in Figs. 1c, 4, 8,) would be useful to access temporal resolution of stages and fossil zonations

Response: We revised Figure 1c (see Response 1), 4 and 8 (see below), and added the cumulative thickness of the sedimentary stratigraphic time stages. This does not alter the results or conclusions of the work.

Reference:


Please also note the supplement to this comment: https://cp.copernicus.org/preprints/cp-2021-108/cp-2021-108-AC3-supplement.pdf