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Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-7-AC1, 2022

Our responses are in bold below.  For ease of reading, we have also included the
comments as a supplementary pdf in which are responses are in red.  Our many thanks
for the constructive comments from our reviewers.

Specific comments:

1) P6, L183 and L188. Vertical eddy diffusivity is varying with depth or is set constant?
Please clarify.

Vertical eddy diffusivity varies with depth.  We will make this clear in the
revision.

2) P6, L196. Which model variables, in addition to the euphotic zone, you could have
simulated? Please clarify why those variables were excluded from the simulation (e.g.,
computational cost?) and explain how this may affect model uncertainty in relation to
other error assumptions.

 

This question is not entirely clear to us.  We did not exclude any variables from
the model.  We simulated all model variables in the depth range from the surface
to the base of the euphotic zone as defined by the 0.1% light level (which was
typically at depths ranging from 40 – 100 m and hence included approximately
10 – 20 model layers).  We made the decision to only model from the surface to
the base of the euphotic zone (rather than from the surface down to an
arbtitrary deeper depth, such as 1000 m) for two reasons: First, it does
substantially decrease computational cost.  Second, the vast majority of our field
measurements were made in the euphotic zone.  Thus simulating the twilight
zone would not give us substantial improvements in model fit (due to a lack of
validation data below the euphotic zone) and also would have added problems
associated with defining boundary conditions (i.e., determining what the
concentrations of each state variable should be at 1000 m depth would not have
been feasible since most of them were not measured beneath the euphotic
zone).

3) P7, L237 and P8, L252-264. In the context of data assimilation, observational errors



are often considered as a combination of instrument and representativity errors, the latter
usually being the most important of all. The authors here quantify observational errors as
the standard deviation of their measurements and/or the instrument error; if I understood
correctly, representativity errors are not considered here. Are these errors relevant in
terms of magnitude with observation representativity errors?

We completely agree with the reviewer that representativity errors are often the
dominant source of error.  However, we believe that the standard deviation of
multiple distinct measurements inherently accounts for the most significant form
of representativity error in our analyses.  Following Janjic et al. (2017) we
consider three types of representatitivity error: I) error due to unresolved scales
and processes, II) observation-operator error or forward model error, and III)
errors associated with pre-processing or quality-control.  We note that since our
data is mostly derived from direct in situ measurements, II and III are much less
significant than they tend to be with, for instance remote sensing
measurements.  We thus believe that error due to unresolved scales and
processes is the dominant component in representativity error for our study. 
These unresolved scales and processes include such phenomena as temporal
variability in vertical mixing or surface irradiance (i.e., inaccuracy of our steady-
state physical forcing), diel variability in phytoplankton carbon:chlorophyll
ratios, internal waves that displace communities upwards or downwards, etc. 
When we state that we used the standard deviation of our measurements, these
are measurements from different sampling points within a model layer during
the Lagrangian experiment (i.e., different times and depths).  This variability
from one measurement to another thus incorporates representativity error (or at
least the portion of this due to unresolved scales and processes) along with
measurement error.  Typically, this standard deviation (which incorporates
representativity error + instrument error) is the error that we used.  However, in
the rare cases where the standard deviation was less than expected instrument
error (which can happen, for instance if four nitrate measurements all returned a
value of 0.4 mmol m-3), we used the instrument error.  

4) I am confused with the threshold limit “detlim” referred as “experimental detection
limit”. How this threshold is defined? I see that the “detlim” depends on indeces i,j,k and
that k-index is not an option for the observations; why? I think the authors should provide
more explanations regarding the “detlim” threshold, because the cost function decrease
(after several iterations) largely depends on this (at least this is what I understand from
the definitions of J(p) and error_i,j,k at the end of page 7).

The experimental detection limit varies for each measurement type.  For
instance, for particulate nitrogen the observational detection limit was 0.2 mmol
N m-3.  This means that when values are below this (i.e., a measurement of 0
mmol N m-3, we have no knowledge of whether the actual value was 0.001, 0.01,
or 0.1 mmol N m-3).  Thus we cannot penalize the model if it returns any value
less than the detection limit when the observation is also less than the detection
limit.  So if, for instance, the observation was 0.1, but the model returned a
result of 0.02 we cannot say that there is any model mismatch at all (since both
are less than the detection limit).  In practice, the actual value of detlim for each
measurement was not very important to our results, because observations were
seldom less than detlim.  However, this formal definition is necessary with log-
normally distributed errors, because occasionally the reported observation value
was zero (or even negative, in the case of NPP) and since the model can never
take on values less than or equal to zero, this would lead to an infinite cost.  

5) Overall, in the data assimilation Section 2.4, it is not clear to me which model variables
consist the control vector e.g., is it the same with the model state vector described in



Table 1 (or not)? Please clarify.

Just to be clear, since terminology can vary across disciplines, we assume that
“control vector” is used here to denote the adjustable variables or parameters
that determine the model’s predictions and hence model-data misfit.  As such
our control vector is the set of 102 model parameters that we allow to vary
(given in Supp. Table 1).  This is essentially all parameters except for TLIM (the
temperature dependence of growth, grazing, and respiration rates), which we
chose not to allow to vary because it is both fairly well constrained from
measurements and because allowing it to vary would obfuscate interpretations
of variability in other parameters.  We note, however, that model results also
depend on the initial conditions, boundary conditions (at the base of the
euphotic zone), and physical forcing (temperature, vertical diffusivity, and
surface irradiance), which we prescribe directly from field measurements and
hence do not allow to vary.

6) P18, L669-670 “our work shows that very different parameter sets can result in similar
cost function values, despite generating distinctly different model outputs”. This is an
interesting result, but what does it means exactly (especially here where the cost function
is different wrt variational approaches)? Please elaborate.

Most medium- to high-complexity biogeochemical models still utilize an
approach a single biogeochemical parameter set to reach their conclusions. 
Sometimes this parameter set is determined by manually “tuning” the model to
approximately match a set of observations, while other times the parameter set
is determined through formal data assimilation that seeks to find the parameter
set that produces a global minimum in a cost function relating model output to
observations.  Both of these approaches, however, seek to find a single “best”
set of model parameters that can then be used for a model run, which will be
used to interrogate aspects of the marine system (e.g., in our case to understand
the different pathways of the biological carbon pump).  Our study shows that in
a high-dimensional system (as all medium- to high-complexity biogeochemical
models are) distinctly different sets of parameters can match the observations
equally well but produce very different model results.  Indeed, all of the
parameter sets identified by our OEPMCMC approach had approximately identical
values of the cost function, but some produced model ecosystems in which
mixing was the dominant pathway of vertical carbon transport while others
produced ecosystems with sinking particles as the dominant pathway.  With
either a typical “tuning” procedure or a more formal variational data assimilation
approach, investigators would arrive at a single parameter set that would predict
either that the ecosystem was dominated by mixing or by sinking particles (or
perhaps a 50/50 split) that would give them a false certainty about the behavior
of the ecosystem.  An ensemble approach, using different biogeochemical
parameter sets, is necessary to diagnose this model uncertainty.  

 

7) P19, L690-692 “A further study (Anugerahanti et al., 2020) simultaneously perturbed
physical circulation fields and the biogeochemical model and found that results were most
sensitive to variability in the biological model”. Vervatis et al., (2021a) and (2021b)
performed ensemble simulations, using a 3D high-resolution ocean physics and
biogeochemical coupled model, to investigate unresolved scales and processes, perturbing
(1) only ocean physics, (2) only BGC sources and sinks, and (3) both physics and BGC
simultaneously, and found that uncertainties in physical forcing and parameterizations
have larger impact on chlorophyll spread (and other BGC variables) than uncertainties in
ecosystem sources and sinks. Moreover, this had an impact on increment analysis



correction and on empirical consistency between model-data misfits, using various
datasets (e.g., SST, SLA, total CHL and/or class-based PFTs). I think part of this
information would improve the quality of the paper. This is merely a suggestion and I
leave it up to the authors to decide if it is relevant to their work.

Thank you for pointing us to these recent studies.  We plan to add their results to
our discussion.   

Minor comments:

1) P1, L26. Please avoid acronyms in the abstract e.g., CCE.

Thank you for noting this. We will correct in the revised version.

2) P7, L250. Do you mean N_O,i,j instead of N_M,i,j?

Yes, thank you for catching this.  We had originally used ‘M’ for measurement
and changed to ‘O’ for observation, but clearly missed one spot. 

Please also note the supplement to this comment: 
https://bg.copernicus.org/preprints/bg-2022-7/bg-2022-7-AC1-supplement.pdf
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