Anonymous Referee #2

Referee comment on "Data-based estimates of interannual sea–air CO₂ flux variations 1957–2020 and their relation to environmental drivers" by Christian Rödenbeck et al., Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-304-RC2, 2022

The authors reconstructed the sea-air CO₂ flux during the period 1957-2020 by applying the mixed-layer scheme method (Rödenbeck et al 2013) in combination with multiple linear regressions between DIC fluxes in the mixed-layer and SST/wind speed. Surprisingly, the reconstruction starts at 1957, which is the dawn of history of surface ocean CO₂ observation and seems to have the longest term among similar studies ever done constrained by surface pCO₂ observations. Such a study can contribute to performing more accurate atmospheric inversion systems and validating ocean biogeochemical model outputs, as well as evaluating the oceanic CO₂ sink evolution during the industrial era. The authors also struggled to analyze ocean biogeochemical processes which dominate the carbon flux in the mixed layer by using their scheme used here. This study provides a long-term reconstruction useful for several communities interested in the global carbon cycles and novel knowledge on ocean biogeochemical process relating to surface ocean CO₂. To this end, I think that the manuscript has sufficient values to be published in this journal, after some minor concerns listed below are properly addressed. In addition, major viewpoints of the study had already discussed actively before the time I received the review offer. So, there are little comments I can show here, and I would apologize if some comments were duplicated.

I'd like to encourage the authors to improve the study and to revise the manuscript for better understanding.

General comment

The authors adopted an approach using the multiple linear regression (MLR) analysis. As they described in the manuscript, MLR has a potential to express oceanographical
processes which could alter the carbonate chemistry, though the method is computationally primitive. They used a hybrid method to cover up some demerits of MLR. This succeeded in diminishing the uncertainty of reconstruction, but lacked consistency in the method.

This study well reconstructed a recent trend of increase in oceanic CO2 sink but failed to give information on the sink evolution in earlier decades because of the use of model output for the period. This might not be a major problem, because the authors mainly focused on the interannual variability of the flux and the mean state of ocean biogeochemical processes, as they said in the manuscript.

Specific comment

P14 3.5.1 to 3.5.3

What is the reason that u_2, not $d\text{SST}/dt$ and/or SST, has the largest effect on DIC flux in the marginal subtropics and subpolar region, where mixed-layer deepening affects the DIC concentration in the winter? All three are good indicators for mixed-layer development. Is it because mixed-layer deepening is not an interannual but a seasonal phenomenon?

P16 L1-4

In general, the wind speed often correlates to SST during the deepening of mixed-layer. It is needed to mention a potential reason why the two are mutually independent.

P17 L7-15

I was surprised that chlorophyll-a concentrations don’t add any information on interannual
variability of DIC flux (and I guess that dCHL/dt also cannot add any information too). Once more, is it because blooming is not an interannual but a seasonal phenomenon?

P18 L24-26

SST has an obvious secular trend like CO2 concentrations in most of the surface ocean. High-SSTs caused both by long-term global warming and by interannual variability have similar effects on stratification, and the same can be said for the case of wind speed, if any secular trends exist. So, the discussion in 4.3 is reasonable. However, that is not sure in the case that some biological and/or biogeochemical processes influence DIC flux, including changes in biological species, which should be considered when long-term analyses be done. Please consider adding more explanations about that, if needed.

P19 4.5 There are little processes which can alter the alkalinity especially in seasonal to interannual timescales, but it can change due to biological/biogeochemical transition during long-term analyses. Please consider adding more explanations about that, if needed.