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I appreciated the analysis of impact of gridding resolution on the results. However, I
wonder about the impact of binning the DMS data monthly regardless of year.  Looking at
the data in Figure 4, there is significant patchiness which I can only imagine is temporally
and spatially variable.  Given the power of the machine learning algorithms, why not use
the full complexity of the dataset and pair the DMS observations with the closest (spatially
and temporally) measurement of the predictor data sources?

We considered this, but there were a couple of factors that influenced our decision to use
a monthly resolution. Training these models on daily resolution data could introduce bias
due to autocorrelation among observations from the same cruise (L426-427, also
discussed in Wang et al. 2020) and monthly-binned data allows us to reduce this source of
uncertainty. In addition, daily resolutions have poor spatial coverage due to cloud cover
creating gaps in the satellite’s field of view. Monthly averaged predictors thus require less
interpolation to match observations in space/time, allowing uncertainty in the models’
training accuracy to be reduced.

Two machine learning algorithms were used in this study but there wasn’t a robust
analysis of which one was better and why. Should future studies use one over the other?
Does one need to try multiple methods? Such a discussion would be a valuable addition.

We feel that the results presented largely show a strong agreement between the two
methods (discussed in Sec. 3.2), as illustrated by the similar predictive accuracy (Fig. 3),
spatial distributions (Fig. 4), and coherent predictor correlations (Fig. 6,7). Although there
are some areas where the models deviate spatially, these are also areas with poor
observational coverage (L271-273), which makes it difficult to ascertain whether one
model’s estimates are superior to the other. Future studies will likely benefit from applying
both approaches to other regions of interest for DMS, where differences in algorithm
performance may become more apparent.

Minor comments:

- The methods are very sparse. More information on the machine learning algorithms
should be included (e.g. was this done with a package? If so which one?) This is in the
‘code availability’ statement to some extent but should be included in the methods along



with a brief description of the algorithms and differences between the two.

We have expanded Sec. 2.2 (L138-145) to briefly describe the two algorithms used. We
have also added a line noting the specific package/functions used (L153-154). 

- Only 20% of the data was held back for testing.  It seems that it would be better to have
a 50/50 split to provide a sufficiently large dataset for testing to confirm the robustness of
the results.

The major limitation of these machine learning algorithms is that their performance is
sensitive to the size of the training dataset. As a result, the typical approach is to feed a
larger fraction of the data (ex. 70%, see Weber et al. (2019); Roshan & DeVries (2017))
into the training process to allow for appropriate learning of the underlying patterns. In
contrast to these global studies, we have chosen a slightly more restrictive train:test split
of 80:20 to compensate for the reduced sample size and smaller geographic extent
associated with a single region.

- Are there any issue with correlations between the predictor variables? For example,
many are derived from MODIS and so should have inherent correlations (ie not
independent measurements).

There is likely some inherent covariance between predictors, to a degree, given their
distributions are dependent on similar processes (for example: circulation patterns, or
nutrient depletion via biological production). We note, however, that we have taken steps
to reduce any covariance that may confound the models' results, such as including only a
single biological predictor (see Sec. 2.6) and iteratively testing the addition of each new
predictor on the RFR and ANN performance during development (for example, the
extinction coefficient, Kd, was removed as it decreased R2 due to covariance with other
predictors).  

- Figure 1: It seems a bit surprising that the R2 value decreases so dramatically with
resolution but the DMS flux barely changes. Is this just due to the large spatial variability
in the flux?

Yes, this is due to spatial variability.

Line 37 missing an ‘a’ —> by a suite of environmental …

Thank you, this has been corrected.

Line 152: typo? Should it be modified from?

Thank you, this was a typo. In response to another reviewer’s comments, this section has
now been rephrased using a new k parameterization.

Eq 4: are the coefficients provided anywhere?

There are no coefficients for Eq. 4 (SRD) which is used within the VS07 model. 

Figure 1: caption refers to green lines/symbols instead of black

Thank you, this has been corrected.

Line 261: it would be helpful to provide the fractional area represented by the study
region.  For example, if it accounts for only <1% but accounts for 4-8% that is more
impactful.



We have removed this line in response to another reviewer’s comment. In short, we have
reevaluated our calculations to report the summertime regional-averaged fluxes only as
Tg S, as assumptions in the conversion to an annual flux estimate were likely erroneous.

Line 461:  it should be “approach for modeling”

Thank you, this has been corrected.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

