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Reviewer 1: This is a useful, well written paper that describes estimates of the attenuation-
corrected radar reflectivity factor from a ground-based X-band radar using radar returns
from the surrounding mountains as a path-attenuation constraint.  I recommend
publication.

Comment/Reply: Thank you for the time spent reviewing this article and the positive
feedback.

Reviewer 1: One advantage of having a fixed radar and fixed targets, as opposed to
airborne/spaceborne radar geometry, is that measurements of the reference target can be
made before and after the rain event so that an assessment can be made as to how the
target reflectivity might have changed during the event.  Although dry and wet mountain
targets can have different radar reflectivities, I would expect that a good assessment of
the accuracy of the PIA estimate can be made.

Comment/Reply: The accuracy of the MRT-derived PIAs was studied by Delrieu et al.
(1999) by comparing MRT estimates with direct measurements obtained with a receiving
antenna set up in the mountain range. We showed at that time that (i) selecting strong
mountain returns (typically greater than 45-50 dBZ) allows to mitigate the impact of
precipitation falling over the target (negative bias), (ii) that a refined estimation of the so-
called dry-weather baseline is required to account for the possible modification of
backscattering properties of the mountain surfaces before and after the event and (iii)
that the time variability of the dry-weather returns defines the minimum detectable PIA.
These findings were accounted for in the present study with the selection of strong
mountain targets (dry-weather reflectivities > 45 dBZ), a refined characterization of the
dry-weather baselines and consideration of a 1 dB lower limit for “reliable” MRT PIAs.

Reviewer 1: A disadvantage of this geometry is that the mountain targets do not exist
along all rays so that, I would imagine, some assumptions must be made to transfer
information from estimates along rays/range-profiles with reference data to those
without.  Perhaps this is where the cost function becomes necessary.

Comment/Reply: The cost function is indeed one element of the proposed sensitivity
analysis which uses the MRT PIAs available in some specific directions to optimize the
parameters of the attenuation model (coefficients of the A-Z and A-Kdp relationships,
calibration error, on-site attenuation). In a further step, this may allow implementation of



attenuation correction algorithms in all directions, e.g. with polarimetric algorithms for
significant/strong attenuations and/or with the AZhb algorithm for moderate attenuations
(< 10 dB) for which the PHIdp signal is often too noisy.

Reviewer 1: Another difficulty is that the reflectivities of the targets are not all the same
so the dynamic range of rain rates that are observable will vary from target to target. 
Similar issues arise with air/spaceborne platforms since the strength of the radar return
from the surface depends on incidence angle and surface type.  The authors note that
most of the targets have a Zref value of at least 45 dB.  For very strong target returns, I
would guess that it’s possible to see the mountain return even when the nearby rain signal
is lost.  (I realize that the authors address some of these issues in lines 311-331 and in
some of their previous papers.)

Comment/Reply: The higher the dry-weather reflectivity of the mountain target, the wider
the measurable PIA dynamic range. Maximum PIA values of about 60 dB were estimated
in our study. For such big PIAs, both the reflectivity and the polarimetric signals are likely
to be lost at some range between the radar and the target. So yes, it may be possible to
quantify the PIA but not necessarily to reconstruct the entire rain profile. Note also that,
due to the additivity of powers, considering mountain targets with high dry-weather
reflectivity (typically greater than the maximum expected precipitation reflectivity) is
desirable to limit the effect of rain falling over the mountain. For example, a 50 dBZ rain
falling over a 50 dBZ mountain target would result in a total signal of about 53 dBZ,
introducing a 3 dB negative bias on the MRT PIA. While we would have preferred a 50 dBZ
threshold in our study, consideration of a lower value (45 dBZ) was found necessary to
get targets with rather homogeneous sizes. The dynamic range of the reflectivities of the
selected mountain targets is [45 – 65 dBZ], therefore we expect a limited influence of rain
falling over the targets, even for the convective cases considered in the article.

Reviewer 1: What about rain that occurs beyond or above the ranges at which targets are
present.  Do the methods work well in these areas? Visual comparisons of the PPIs in Figs.
1 and 2 seem to indicate the existence of radar returns from rain beyond the mountain
returns.  These plots also seem to show some rays that contain multiple targets that are
widely separated in range.  Can these methods be generalized to rays having multiple
reference targets?

Comment/Reply: In the presented case study, we intentionally used the lowest elevation
angle (0°) of the volume-scanning protocol of the Moucherotte radar to get the strongest
mountain returns in order to obtain the most accurate PIA estimates. Applicability of the
AZC, AZα and AZ0 algorithms is limited to profiles with a MRT PIA estimate at a given
range rm (beginning of the mountain target). Hence for ranges above and beyond the
mountain target, one must rely on measurements made at upper elevation angles and on
AZhb and polarimetric algorithms, eventually constrained by the proposed parameter
optimization method.

Reviewer 1: The modified α (eq. 2.21) or C methods (eq. 2.17) depend on the unknown
attenuation factor to range r0 whereas the final-value method (eq. 2.26) does not.  This
would appear to be an advantage of the final-value.  However, it doesn’t seem to be
possible to apply the final-value method to rays that do not contain a reference target.

Comment/Reply: Indeed the three formulations require a PIA estimate at range rm. Each
of them “filters out” one of the three important sources of error associated respectively
with the (rather subjective) choice of the α value, the determination of the radar
calibration error and possible on-site attenuation. I find difficult to say whether one of the
three formulations has an advantage over the others. The “philosophy” of our method is
more to use these three formulations all together for estimating the α, dC and PIA0 values
that lead to a convergence of their solutions (the cost function being a “simple” measure



of this convergence).

 Reviewer 1: I had some difficulty understanding the motivation for the cost function given
by eq. (3.1)

Comment/reply. This is a crucial point, explained in detail in section 3.1. Let’s try to
rephrase it in another way: we propose in fact a parameter optimization procedure based
(initially) on four different mathematical formulations of the attenuation-reflectivity
equations (4 AZ algorithms: AZhb, AZC, AZα and AZ0) accounting (or not for AZhb) for a
MRT PIA estimate available at a given range rm:

Using the “Latin Hypercubes Sampling” technique, we draw randomly sets of parameter
values (α, dC and PIA0; but also an error term on the MRT PIA value) sampling
uniformly the “parameter space”.
For each of these parameter sets, we compute the corrected reflectivity profiles given
by the 4 formulations.
We are happy when a given parameter set allows a satisfactory convergence of the
solutions of the 4 algorithms. Measuring this convergence is the role of the cost
function.
Considering the resulting “optimal parameter sets” obtained for all the targets and all
the time steps of an event and a series of events, we infer some values and trends on
the calibration error, the coefficients of the AZ relationship and the radome attenuation,
that can be used in a further step in the implementation of given algorithms.

But, as noted early (e.g. Haddad et al. 1995), the system of attenuation-reflectivity
equations is prone to mathematical ambiguity, i.e. several combination of parameters
(including non-physical values) may lead to the convergence of the solutions of the
different algorithms. This is a fundamental limitation of our attempts to optimize the
attenuation equation parameters (this is quite a frequent situation in environmental
sciences…). We have found however that this mathematical ambiguity was significantly
reduced when we took into account more information (more constraints) with a fifth
algorithm based on polarimetric data (the Phidp profiles). This led to a complexification of
the cost function (eq 3.1) but also to added results about the coefficients of the A-Kdp
relationship.

Also, due to its “explosivity”, we found necessary to limit consideration of the AZhb
algorithm in the cost function to moderate PIAs (less than 10 dB).

Reviewer 1: so let me ask the following question.  Assume that modified α’s from, say N,
mountain targets are obtained, at a given time step, and the mean is taken.  This
modified mean α could then be used to obtain attenuation-corrected Z profiles over the
full volume scan of the radar, including rays with no reference target.  Would these
profiles be significantly different from the profiles obtained by minimizing the cost
function? The same procedure could be done for the C-adjustment approach but it would
be difficult to interpret this physically since C should be independent of the viewing angle -
unless this adjustable C could somehow account for radome loses that change with look-
angle. 

Comment/Reply: We had this kind of discussion in our section 2.4 about the analysis of
the a priori values to be given to the parameters of the physical model at hand. In short:

we assumed the radar calibration error to be constant for a given event;
the PIA0 values were allowed to vary from one time step to the next and from one
direction (target) to the next; we took into account (or not) the Z0 value at the radar
site as a proxy for significant radome attenuation;
the MRT PIAm values were supposed to vary in a [-1, 1 dB] range around the



measured value;
acknowledging the dependency of the coefficients of the A-Z and A-Kdp relationships on
the underlying drop size distribution, we choose to consider several fixed values for the
exponents and to let the prefactors vary in a given range around central values. The a
priori values of the exponents and central values of the prefactors were estimated from
concomitant DSD measurements
the optimal (a posteriori) parameter values were determined by considering the total
number of optimal parameter sets for each simulation.

Reviewer 1: Again, this kind of approach probably wouldn’t work for the final-value
(Marzoug-Amayenc) method as the equation doesn’t have an adjustable parameter. 

Comment/Reply: not sure to understand. Both dC and alpha are parameters for the AZ0
algorithm…

Reviewer 1: In Fig. 3, results from 6 methods are shown but it’s sometimes difficult to
track the behavior of the individual methods.  For example, the HB estimate seems to
diverge for ranges beyond about 6 km.  In fact, the blue line (HB) in panel a is only visible
around 5 km; for closer ranges, it probably exists but is hidden by the other curves. 

Comment/Reply: Yes, we acknowledge that the behaviour of the different algorithms is
difficult to track since we are essentially looking for them to converge! This is effectively
the case for the AZhb solution hidden by the others at range less than 5 km in Fig. 3. It is
important to remind that for this profile with a 25 dB PIA, the AZhb algorithm was not
accounted for in the cost function because of its inherent inability to deal with such great
PIAs. The right panels of Fig. 9 present a case with full convergence of the 4 AZ
algorithms for a profile with a PIA of about 10 dB, while the AZhb is also not considered in
the calculations of the left panel (profile with a PIA of about 40 dB).

Reviewer 1: Z0 is defined at bottom of p. 10 as the measured reflectivity in the vicinity of
the radar site, which is the range which is greater than the blind range and any clutter.  If
Z is the attenuation-corrected reflectivity at this range, then is the following equation
correct: Z=Z0+PIA0? (where Z0, Z are in dBZ units).

Comment/Reply: Yes, in our calculations, Z0 value is just corrected for the supposed
calibration error (dC) but not for the on-site attenuation. This is in part why this value is a
poor predictor for PIA0. This could be improved by implementing some iterations in the
(already heavy) calculations.

Reviewer 1: It seems that the phi-DP measurement has greater information content than
the MRT in the sense that it provides an estimate of path attenuation to any range
whereas the mountain return yields only a single path-attenuation estimate between the
radar and the target.  Is it correct to say that the phi-DP used in this paper is the value
near the reference target?  Couldn’t it be used as a continuous variable to help validate
the MRT estimates or is it too noisy?  (Not sure if I’m making myself clear: if, at an
arbitrary range, r, the phi-DP is used to estimate the two-way attenuation to that range,
A(r), then Z(r)=Zm(r)+A(r), where Z, Zm are in dBZ units.)

Comment/Reply: Yes, the polarimetric measurements are much more convenient in the
sense they allow PIA estimation for any ray at different ranges. However these estimates
are undirect: for their interpretation we need to specify the A-Kdp relationship which
depend on the precipitation type. In addition, the Phidp profiles are known to be noisy for
low precipitation rates. Yes the Phidp used for the PIA estimates are the values near the
mountain target (with a possible slight underestimation of the resulting polarimetric PIA
compared to the MRT PIA which is determined over the entire range extent of the target).
In our approach, we trust the MRT PIAs and, among other points, we use them for the



interpretation of the Phidp measurements and the optimization of the A-Kdp coefficients.

 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

