The study "Impact of 3D Cloud Structures on the Atmospheric Trace Gas Products from UV-VIS Sounders - Part II: impact on NO2 retrieval and mitigation strategies" by Huan Yu et al., Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-338-RC2, 2022

However, I see a fundamental flaw in the design of this study, as it is doing the second step before the first one:
The quantities directly affected by 3d cloud effects would be the retrieved cloud fraction and cloud height.
These quantities are generally used for calculating NO2 AMFs, and, as far as I understand, this should not be changed according to the authors.
But then it is essential to first check how far the cloud retrievals are affected by 3D effects before analysing the effects on trace gases.

For instance, a cloud shadow causes lower reflectance. This might actually be dealt with in the existing algorithms if negative cloud fractions would be allowed. This way it might be actually quite simple to account for cloud shadow effects without introducing new concepts/quantities like CSF.
Also other 3d effects (clouds in neighboring pixels) will affect the cloud fraction and cloud height retrieved based on IPA. It would be interesting to see to which extent these "wrong" CF/CH parameters do the NO2 AMF correction intrinsically (such as aerosol effects being partly accounted for by the cloud algorithms yielding higher CF and lower CH than "reality").

I would thus like the authors to add an analysis of 3D effects on the cloud products first. The further mitigation strategy might be different if 3D effects could already be accounted
for by e.g. negative cloud fractions. In any case, the mitigation strategies cannot be discussed without knowledge on the effect of 3D cloud structures on the standard cloud products themselves.

Minor comments:
Page 1, Line 2: "generally implement Lambertian cloud models": This is not true, see for instance OCRA/ROCINN.
Page 1, Line 3: "photon path length corrections": to my understanding, the cloud algorithms interpret the measured O2 or O4 absorption in terms of a cloud height. This should be stated here.
Page 2, line 6: "amount of the trace gas along the average path": this sounds like the average path could be calculated and then linked to the amount of trace gas. It is rather the average absorption along light paths.
Page 2, line 19: "A simplified Lambertian cloud model is generally used": This is not true, see for instance OCRA/ROCINN.
As the remaining text might change considerably, I do not provide further detailed comments for now.