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Response to comments of reviewer 3
We thank the reviewer for the helpful comments and suggestions, and for careful reading
of the manuscript. Listed below are our responses, with the original comment/question
displayed in italics.

Anonymous referee report
The paper from Sheng Li and Ke Du proposes a new minimum curvature (MC) algorithm to
apply smoothness constraints in the tomographic inversion of optical remote sensing
measurements, to reconstruct the spatial distribution of atmospheric chemicals in a given
domain (a 40 x 40 m square area in the example given). The authors compare the
performance of their new proposed method to that of other existing methods, such as the
non-negative least squares (NNLS) and the low third derivative (LTD). The performance is
assessed on the basis of a few test maps containing one or several (up to five) bi-variate
Gaussian sources. Apparently, the MC algorithm performs significantly better than the
NNLS method, and shows almost the same performance of the LTD algorithm in terms of
reconstruction accuracy. Compared to this latter, however, the MC algorithm allows to
save from 27 to 35% computation time, depending on the number of sources in the
domain.
The subject of the paper is interesting, comprehensively presented in the introduction and
put in the context of the existing literature on the topic. The method used for the
assessment, however, is not sufficiently general and could be improved. The presentation
of the algorithms assessed is not sufficient, the actual equations used should be included
in the paper. Regarding the language of the text, I am not native English speaker, thus I
cannot provide a reliable feedback. However, the language sounds a bit “strange” to me at
several instances. Therefore I recommend a review by a language Editor. Also, I would
suggest to avoid flooding the text with acronyms. Several of them are not really necessary
and make reading the paper uncomfortable.
In conclusion, I am very sorry but I can recommend this paper for publication in AMT only
after major improvements, as outlined in the comments below.
Thank you for the comments and suggestions. We have done a major revision according
to your suggestions. Please see the responses below for specific changes we have made to
the manuscript.

General comments
My main concern is that the authors have compared the field reconstruction errors of the
NNLS, LTD, MC (and GT-MG) algorithms on the basis of a set of only five test distribution



maps. I would say that they have verified some necessary conditions which, however, are
not sufficient to assess the relative efficiency of the considered methods. Each solution
depends both on the measurements and on the constraints applied. Here it is not clear
whether the LTD and MC solutions perform better than the NNLS because of the smarter
applied constraints or because of the specific experimental distributions (bi-variate
Gaussians) considered in the examples given.
There are several things which need to be mentioned about this comparison. 
(1) The performance of the algorithms is problem dependent. The beam configuration and
underlying concentration distribution also affect the reconstruction quality. There is no one
algorithm that performs absolutely better than others all the time. Even the NNLS
algorithm could give the best result under some specific conditions (Wu and Chang,
2011). This is the common situation for an optimization algorithm. 
(2) The bi-variate Gaussians are good choice to simulate the diffusion process. It has been
commonly used in the comparisons of the algorithms in the ORS-CT problems. The
generated maps better simulate distributions which have several hotspots. It is true that
the real distribution map may be complicated depending on the specific dispersion
conditions. Other methods to generate the test maps can also be used. For example, the
bivariate lognormal distribution was used in Wu and Chang (2011) to simulate a non-
symmetric distribution. But that only represents one situation, and the distribution
function may not be better than others in other cases. 
(3) Another reason that the test maps were generated in this way is for the purpose to
compare with the results from the GT-MG algorithm, which used the bi-variate Gaussians.
And the beam configuration was also set to be similar to that in the GT-MG approach. This
is a common set for comparisons of tomographic reconstructions and was used in practical
applications (Dobler et al., 2017). 

Error covariance matrices and averaging kernels (see e.g. Rodgers, 2000) are broadly
used tools in the atmospheric remote sensing community to characterize the recovered
spatial distribution (yes, also 2D distributions ...) from the point of view of the retrieval
error, and of the spatial resolution (width of the Point Spread Function) of the
measurement chain (measuring plus inversion systems). Applying these tools to the
inversion methods considered in the paper is possible, thus the authors should use them.
For example, from the analysis reported in the paper, it is not self evident that the spatial
resolution of their measuring system changes strongly depending on the x,y position
within the squared field considered: there are grid-elements which are crossed by 2 or 3
beams, and others (near the sides of the field) which are not sounded at all. Thus, the
spatial resolution must be very poor near the sides of the squared field and much better
near the center. I believe this feature would be self-evident from maps of the diagonal
elements of the 2-dimensional averaging kernels of the different solutions considered (see
e.g. von Clarmann et al, 2009).
Thanks for the good suggestions. We have added the averaging kernel matrix into the
manuscript to determine whether the concentration can be independently predicted and
how regularization limits reconstruction accuracy. In the 2-D tomographic reconstruction,
the averaging kernel is considerably affected by the beam geometry and is better to be
used as a measure to evaluate the beam configuration. But it also reflects the
regularization error given the same beam geometry in this study. We used a measure
called fitness which was defined as the average Frobenius distance between the resolution
matrix and the identity matrix to predicate the reconstruction error. The MC algorithm
shows slightly better performance than the LTD algorithm with a fitness value of 1.3878
comparing to 1.4411. 
The off-diagonal elements are not zeros. The reconstructed concentration at each pixel is
a weighted average of the concentration of the surrounding pixels because of the
smoothness regularization. Each row of the resolution matrix can be regarded as
smoothing weights. The 2-D display of the row of the averaging matrix gives a clear
dependence of the beam configuration, while the diagonal elements may not provide much
information in this case.



Please refer to section 2.5, 3.5 in the supplement for the detailed description.

Specific comments
Lines 42-44: please include references for the mentioned techniques. They are not
standard for the whole atmospheric remote sensing community.
The reference has been added (Radon, 1986; Herman, 2009; Censor, 1983).

Lines 73-74: not only, I guess. The chosen pixels should be crossed at least by one beam,
otherwise the NNLSF is ill-posed.
That is correct. For the traditional pixel-based methods, the pixel is required to be passed
by at least one beam, otherwise the problem will be ill-posed. The regularization technique
is the method to solve the ill-posed problems by adding a priori information into the
original problem. This is shown in this study by using high-resolution grid division, in
which case many grids are not passed by the laser beams. But we still got a good
reconstruction through smoothness regularization.

Line 122: I would name the small squares as “pixels” instead of “grids”.
"pixels" has been used.

Line 127: if the PIC is measured at the retro-reflectors, then you have only 16
measurements, or 20 measurements if retro-reflectors are installed also at the corners of
the square. Instead, I guess that for the NNLSF you need at least 36 measurements.
Please make an effort to describe more thoroughly the experimental setup.
It is correct that there were 20 retroreflectors installed (including the ones at the corners).
We can see from bean configuration (Fig. 1) that each retroreflector reflects two beams
coming from different directions. Therefore, the total beam number will be 20×2=40.
After removing the overlapped beams along the diagonals, the total beam number is 38.
We have revised the texts to give a more detailed description of the setup. Please see
section 2.1 in the supplement.

Section 2.1: it would be interesting if the authors could explain the details of the
experimental setup, I could not understand which is exactly the measured quantity. This
would be useful also to understand to which degree the linear formulas (1) and (2) are
accurate.
For each laser beam, the path-integrated concentration (PIC) is measured by the
analyser. The predicated PIC for one beam equals to the summation of the multiplication
of the pixel concentration and the beam length passing it. In generality, let us assume
that the site is divided into Nc=m×n pixels, which are arranged as a vector according to
the left-to-right and top-to-bottom sequence and indexed by j. The average concentration
for j-th pixel is cj. The total number of laser beams is Nb which are indexed by i. The
length of the laser beam passing the j-th pixel is Lij. Then for the i-th beam, the measured
PIC bi is contributed by all the pixels that it passes. A system of linear equations can be
set up for all the beams: b=Lc, where L is the kernel matrix that incorporates the specific
beam geometry with the pixel dimensions, c is the unknown concentration vector of the
pixels, b is a vector of the measured PIC data. This section has been rewritten to give a
detailed explanation of the experimental setup. Please refer to section 2.1 in the
supplement. 

Equation (3) assumes that all the measurements have the same precision, which may not
be the case if the signals observed are very different in intensity (e.g. because of the
different absorption paths). Could-you please add a comment?
Yes. A weight needs to be assigned to each equation depending on the uncertainty of the
observation. Assuming the analyzers have the same performance, the uncertainty is
mainly related to the path length. Therefore, equations are assigned weights inversely
proportional to path length to make sure different paths have equal influences. In this
study, the lengths of the laser paths are approximately equal to each other. Thus, their



weights were all set to be the same value which is scaled to be 1. The weights for the
third-derivative prior equations were assigned to be the same value of w because they
were all based on the same grid length. Please see section 2.2 in the supplement for the
revised description.

Line 139: With equation (3) you require a solution with “small” Li c norm, whereas,
usually one requires a small Li (c – ca) norm, where ca is some prior estimate of c. Please
explain the rationale behind your choice of ca = 0.
Using (c-ca) means that we have some predefined values ca which we use to regulate the
solutions to make it close to the prior estimations. This is the case in the atmospheric
sounding problem, where some modeled values are used as the prior estimations. But for
the reconstruction of the 2-D concentration distribution of arbitrary area site. There is no
such prior information about the underlying concentrations. The only information we know
is that the values are non-negative. 

Line 148: If the regularization parameter μ of eq. (3) is grid-dependent, then I would
expect it to appear in some vector form in equation (3) rather than as a scalar. How do
you establish the actual value of μ? Which is the solution of the LTD algorithm? Please
specify the equation.
We have revised the equation. Now the grid length is part of the third-derivative prior
equation. The regularization parameter is independent of the grid size and determines the
balance between data fidelity and regularization terms. Determination of optimum
regularization parameter is an important step of the regularization method. However, the
regularization parameter is problem and data dependent. There is no general-purpose
parameter-choice algorithm which will always produce a good parameter. For simplicity,
we use the method based on discrepancy principle. The regularization parameter is chosen
from a finite section of a monotonic sequence. For each value of μ, an optimal solution is
derived by solving the inverse problem. Then the discrepancy can be calculated. The
regularization parameter is determined to be the highest value that makes the
discrepancy equal to Nbσ2, where σ is the standard deviation of the noise. In this study,
the reconstructions varied only slowly with the regularization parameters. Therefore,
precise selection of the parameter was not necessary. The regularization parameter was
selected from four widely varying values. The one produced the smallest discrepancy was
used. Please see section 2.2 in the supplement for the equations and revised description.

Line 149: In principle, the NNLS algorithm does not use constraints, correct? Here you are
explaining the LTD algorithm, so it cannot be solved with the NNLS approach. Maybe you
refer to the Newton method? Please explain.
The non-negative least square (NNLS) optimization algorithm is the first widely used
optimization method proposed by Lawson and Janson (1995) in their textbook to solve the
non-negative constrained least square problem. In this paper, the "NNLS algorithm" to the
tomographic reconstruction refers to solve the original system of linear equations using
the NNLS optimization algorithm without adding other a priori information. The LTD
approach generates a new system of linear equations with non-negative constrains, which
can also be solve by the NNLS optimization algorithm. Please see the revised description
section 2.1 in the supplement. 

Lines 158-165: Up to eq.(6) and later also in eq. (9), c is a vector. In eq.s (7) and (8) “c”
seems a function. Please improve the notation, it would be difficult to implement your MC
algorithm based on your description.
We have revised the formulates in the manuscript to give a more accurate definitions of
the quantities and distinguish the continuous and discrete functions. The seminorm is
defined as an integral of a continuous function, which is the total squared curvature in the
MC algorithm. Then it is discretized to be the sum of the squared curvature at each pixel.
Also, c is defined as a 1-D vector of the unknown pixel concentrations, while C is defined
as a 2-D matrix of the pixel concentrations when they are arranged in the 2-D form. f(x,y)



is used to describe the underlying concentration distribution. Please see section 2.1, 2.2,
and 2.3 in the supplement for the detailed definitions.

Line 167: I have understood that you are finally using eq.(9), that is the discretized form
of eq.(8). Is eq.(9) more or less equivalent to eq.(7)? This description is very confusing.
The seminorm is defined as the total squared curvature in the MC algorithm. It is first
discretized to be the sum of the squared curvature at each pixel. Then in order to
minimize the seminorm, its partial derivative with respect to the concentration at each
pixel needs to be zero, resulting in a difference equation. This equation is appended at
each pixel as a smoothness prior equation and a new combined system of linear equation
is set up. Please see the revised section 2.3 in the supplement for the equations and the
detailed description.

Line 169: the same comment I made for μ (line 148) here applies to ω. Which constant
for the inverse proportionality did you use?
The weight w is determined in the same way as determining the regularization parameter
of μ, which was described in above answer for question of line 148. Please also refer to
section 2.2 in the supplement for the detailed description.

Line 187: If c(x,y) is a concentration, then Q cannot be measured in ppm (that is a mixing
ratio). Eq.(10) does not contain σ, it contains σx and σy…
The ppm unit has been changed to mg/m3. σx and σy have been defined. 

Lines 212-213: this sentence is not clear to me.
This sentence has been revised as "They did not measure the peak location error and used
a different way to calculate the exposure error by limiting the calculation domain in a
small area near the peak instead of the whole map. Therefore, the results of the GT-MG
algorithm are listed as a reference and only the measure of nearness is compared. "

Line 220: “The smaller the number of sources, the better the reconstruction quality”. I
think this is intrinsic to the definition of the nearness quantifier. Please comment.
There is a mistake in the sentence. It has been revised as "The smaller the nearness
value, the better the reconstruction quality". The trend of nearness with the increase of
the source number is discussed in that paragraph.

Lines 231-233: do you mean that the "peak-location" quantifier could mistake peaks with
similar amplitudes? In this case it would be advisable to refine eq.(12) or to apply it with
some caveats.
When there are two or more peaks on the map whose peak magnitudes are comparable to
each other, the reconstruction algorithm may not identify the correct location of the
highest peak. Therefore, a large error may happen when the highest value on the
reconstructed map is located on the wrong peak.

Line 233: I think that, as it is, eq.(12) is reliable only if the peaks to be reconstructed
have amplitudes that differ from each other by much more that the error with which they
are retrieved. Why the “source number” counts so much?
The reason is given in the previous answer. The large error is mainly because the
reconstructed highest peak is the wrong one. When there are more peaks, this kind of
error is more likely to happen.

Line 239-240: I am skeptical about your general statement regarding the NNLS
performance. I would suggest adding some details regarding how you actually computed
the NNLS solution.
Actually, the NNLS algorithm is used as one representing method to solve the
unregularized inverse problem. The main performance difference is due to the
unregularized and regularized reconstructions. The unregulated inversion uses coarse grid



division and produces fewer pixel concentrations representing constant values in the grids.
Therefore, this method has difficulty dealing with the large variation in a scale smaller
than the grid size. It fits the true distribution better when the distribution becomes more
uniform. We have updated the manuscript to include this explanation. 

Technical corrections
Line 50: summarising ??
This sentence has been revised as "The path integral is approximated by the summation
of the product of the pixel value and the length of the path in that pixel."

Line 85: necessary ?
The word has been replaced by "need".

Line 136: what is the superscript “21” ?
The number has been replaced with a reference.

Line 174: “well-posed”
Corrected.

Line 212: it (?)
Corrected.

Line 224: maybe “complexity” ?
Corrected.

Line 228: are slightly better ...
Corrected.

Line 241: derivation ??
It is the standard deviation of the results from 100 tests.
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Please also note the supplement to this comment: 
https://amt.copernicus.org/preprints/amt-2021-122/amt-2021-122-AC4-supplement.pdf
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