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Response to comments of reviewer 1

We thank the reviewer for the helpful comments and suggestions regarding our
manuscript. Listed below are our itemized responses, with the original comment/question
displayed in italics. Please also find the revised manuscript with track changes.

General comments
The paper faces the problem to introduce the “smoothness” a priori information in the
tomographic reconstruction of atmospheric chemicals based on optical remote sensing. In
particular, a new minimum curvature (MC) algorithm is proposed and applied to multiple
test maps. The performance of the new algorithm is compared with that of other existing
algorithms. The MC algorithm shows almost the same performance as the low third
derivative (LTD) algorithm but with significantly less computation time.
I think that the subject is correctly presented in the introduction and sufficiently put in the
context of the existing literature on the argument; instead, I find that the description of
the method is not given in all needed details. I suggest to improve the description of the
method and below I give some suggestions.
I think that the paper deserves the publication on AMT after that the following issues are
considered.
Thank you for this comment. We have improved the description according to the
suggestions below.

Specific comments:
(1)  In the Tikhonov approach, an important issue is the choice of the value that is given
to the regularization parameter, because this value determines how much a priori
information goes into the results. In the paper, it is specified only “the regularization
parameter is set to be inversely proportional to the grid length”. I suggest describing the
criterion that it has been followed for the choice of this parameter.
This is a very good suggestion. We have rewritten the Sec. 2.2 to give a detailed
description of the determination of the weights and regularization parameter. To
summarize, equations are first assigned weights which are inversely proportional to
path/grid length, in order to make sure that equations with different lengths have equal
weights. In practice, the weights for the laser paths are set to be the same value (one),
and weights for the derivative equations (regularization parameter) are set to be another
value, which is to be determined. Then the regularization parameter is determined based
on the commonly used discrepancy principle. For computational efficiency purpose, the



regularization parameter can be selected from several widely varying values due to the
fact that the reconstructions vary only slowly with the regularization parameters. Finally,
the one produces the smallest discrepancy is used. 

(2)   It would be interesting to know if the algorithm is able also to produce a diagnostics
of the results. Generally, a procedure that solves an inverse problem provides also an
estimation of the errors (more in general of the covariance matrix) of the products.
Furthermore, it would be useful to have quantities (such as the averaging kernel matrices
obtained in the case of retrieval of atmospheric vertical profiles) that provide the
sensitivity of the result to the true state, which are useful also to estimate the spatial
resolution of the result.
This is a good idea. The inverse problem in this manuscript is an over-determined system
of linear equations, which can be analyzed using the conventional measures. However, the
original inverse problem based on coarse grids is transformed to be a regularized problem
with fine grids. In this case, only very limited number of grids are passed through by the
laser paths. Others are restricted by the smoothness information around local neighbors.
As a result, the residuals for each laser path can be easily minimized to be very small
(1e-4), even though the results might be unrealistic. Therefore, traditional measures like
goodness-of-fit or covariance matrix are not that helpful as usual situation. Meanwhile, the
averaging kernel matrix (parameter resolution matrix) is a perfect identity matrix (we
have checked this from the reconstruction results). 
We think that this kind of inverse problems is different in some ways with the retrieval of
vertical distribution of an atmospheric parameter from remote sensing measurements. In
the latter application, the priori information of the state vector (a priori profile) is usually
used. Then the averaging kernel matrix is an important measure to characterize the
solution of the retrieval, including the retrieval resolution effects and a priori effects. But
in the application of two-dimensional gas mapping, there is no a priori profile of the
concentration distribution used. And the reconstruction is based on the high-resolution
discrete grid pixels instead of weighting a set of profiles. Therefore, measures like
nearness and exposure error are generally used to estimate the quality of the
reconstruction in the field of computerized tomography or imaging,

(3)   Line 43: I suggest to put a reference for the Radon transformation.
The reference has been added. 

(4) Line 141-149: In the description of the LTD algorithm it is not clear which are the
equations of the system that has to be solved. I understand that for each cell we have two
equations obtained setting to zero the third derivatives (in both direction x and y, I
suppose, but it is not specified). Then, which are the other equations? Those obtained to
look for the minimum of Eq. (3)? Please explain in detail which are the equations of the
system that has to be solved.
The reviewer is correct. At each grid pixel, two additional linear equations are appended.
These generated equations for all the grids are then combined with the original linear
equations (Eq. 2) of the laser paths, resulting in a new large system of linear equations,
which is over-determined. The new system of equation is solved to find the
concentrations. We have rewritten the contents describing LTD algorithm in Sec. 2.2. 

(5) Line 159-160: From Eq. (7) I understand that the seminorm is a number relative to
the whole field, therefore, I do not understand the meaning that “the seminorm can be
calculated at each pixel”. Then, which is the summation mentioned in the text? I think
that a more clear explanation is needed.
Thank you for pointing this out. The reviewer is correct that the seminorm, which is the
total squared curvature, is defined on the whole field. The total square curvature is the
summation of the squared curvature at each grid pixel. To minimize the seminorm, we
need its partial derivative with respect to the concentration at each grid pixel to be equal
to zero. Thus, we get a difference equation at each grid, which is appended into the



original linear equation to form a new system of linear equations. A clearer description
including the derivation process has been added to the Sec. 2.3. 

Technical corrections:
(1)  The authors introduce many acronyms, but not all of them are then used. I suggest
introducing only the acronyms that are used several times in the paper.
Thanks for this good suggestion. We have checked the acronyms and removed those used
only once.

(2)   Line 26: equality ---> quality
Corrected.

(3)  Line 85: necessary ---> need
Corrected.

(4)  Line 136: what is the superscript 21 after “problem”?
The number has been replaced with a reference.

(5)   Line: 174: well-posted ---> well-posed.
Corrected.

(6)  Line 212: It ---> it
Corrected.

(7)  Line 242: increase ---> increases
Corrected.

(8) Line 286: equality ---> quality
Corrected.
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