Comment on amt-2020-515
John Cassano (Referee)


This paper describes the use of two different commercially available quadcopter drones for observing temperature inversions during the Arctic winter. Very strong temperature inversions, with temperature gradients of 100-300 K / km were observed immediately above the surface and matched in-situ observations from a 10 m tower and from radiosonde observations. This manuscript provides an excellent description of the technical challenges (related to quadcopter navigation and autopilot use) at high latitudes. The scientific results are limited to flights from a 7 day period in March 2020 although the data collected during these flights illustrate the very strong inversion conditions present at Eureka at the end of the winter. The main issue with the data shown in this manuscript are related to sensor lag, the impact of propellor downwash and sensor location on the quadcopter which result in non-negligible errors in the observed temperature. Despite this the results presented will be of interest to those hoping to use small drones to make meteorological measurements and I recommend that this manuscript be accepted for publication. Below I offer a few minor comments.

Specific comments

In the paragraph starting on line 65 it would be good to discuss some of the smaller fixed wing RPAS used for polar research as these are similar in terms of ease of deployment and payload capacity as multi rotor drones.

Small Unmanned Meteorological Observer (SUMO)
Reuder et al. (2009)
Reuder et al. (2012)
Cassano (2014)
Note that Cassano (2014) also note issues with sensor lag for ascent vs descent temperature profiles similar to what you have found.

Line 226: Did you measure the battery temperature during the flight? If not, how do you know the battery temperature during the flights?

A discussion of the temperature measurement issues (sensor lag, downwash impacting observed temperature and temperature differences for the RTD located at different positions on the quadcopter) should be discussed in the conclusions. These are the scientific issues that will limit the usefulness of quadcopters for making scientifically useful measurements of the near surface temperature profile.

While not necessary to cite you may be interested in mid-latitude observations of cold pools using a bicycle based temperature sensor described in Cassano (2014b)

Technical corrections

Line 13: Replace of with above in “60 m of the ground”

Line 49: Replace one with was in “than one measured in Antarctica”

Line 131: Please include link to the relevant DJI web pages here.

Line 316: Replace one with that in “similar to one observed”

References


