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We sincerely appreciate the time and effort of the two anonymous referees and the Editor
in carefully reviewing our manuscript. We were happy to hear that Referee #1 considers
the overall quality of the paper great; agrees that the paper addresses an important
emerging issue; and finds the discussion and recommendation for practice sound. Referee
#2 also agrees that the topic is timely and important, finds the authors knowledgeable of
previous work, and thinks the introduction is well-written.

Both referees and the Editor provided excellent suggestions that have greatly improved
the manuscript and analysis. In the following text, we explain how we have improved the
manuscript based on the helpful feedback (reviewer comments in bold italics, responses in
regular). We have also attached a pdf of the responses with additional formatting to be
clearer. Further, given the recent publication of a relevant study since we submitted the
paper, we have also improved our analysis based on new scientific insights to ensure that
our study is based on the best available science. The combination of incorporating the
latest science as well as the referees’ suggestions has considerably strengthened the
paper and we are extremely pleased with the outcome.

In particular, major revisions include:

Restructuring and streamlining the manuscript to a more traditional Intro, Methods,
Results, Discussion, and Conclusion format. This includes:

More information in the introduction about hydrogen’s warming effects in response
to Referee #1
Less detail and discussion of the problem with hydrogen leakage in response to the
Editor
More clarity and information about our methods in response to both referees and the
Editor, including all relevant equations and input parameters
More detail on what is shown in the figures in response to the Editor
A new discussion section that interprets the results, shows the broader implications
of our findings, and discusses limitations, in response to the Editor

Improving our methodology to include newly published GWP equations that more
accurately account for hydrogen’s several indirect effects
Greatly clarifying the metrics approach used in our analysis and its relationship to GWP,
in response to Referee #2
Removing a lot of the text about metrics issues with a more objective, balanced, and



concise discussion and tone, in response to Referee #2
A new approach for the simple temperature analysis and a revised figure to better
capture the physical meaning of the results, in response to both referees
Addition of 19 new references

-----------------------------------------------------------------------------------------

Referee #1

The overall quality of the preprint is great. The paper addresses an important

emerging issue of hydrogen use in the decarbonation process of the coming

decades. The quantification of the climatic consequences in terms of offsetting

the benefit of decarb is accounted for in various scenarios and assumption space.

The discussion and recommendation for practice is sound.

We are sincerely grateful to Referee #1 for all the time and attention spent on carefully
reviewing our paper. Below we respond point-by-point to both major and minor
comments, with revised text in quotes.

Major Comments:

Framing:

Line 46. “how much hydrogen is ultimately deployed to replace fossil fuel

systems”. There are many places where similar statements are made. e.g., Line

240. “replacing fossil fuel systems with hydrogen applications”

My comment here is that fossil fuel as the primary energy sources are not

*replaced* by hydrogen which is secondary sources. Fossil fuel can be replaced

by wind, solar and nuclear etc. Hydrogen is more like electricity in the battery as

the energy carriers. In that sense, the analysis presented is more akin to the

climatic and environmental assessment of future battery use. Maybe some

rewording for the context is needed.

We see the point the referee is making, and agree that hydrogen is not purely a 1:1
replacement for fossil fuels. To that end, we had tried to be careful by using qualifying
language when discussing “replacements,” such as inserting words like fossil fuel
“technologies” and hydrogen “alternatives.” What we were and are ultimately trying to
characterize is the shift from fossil fuel driven technologies to hydrogen driven
alternatives, and to that extent we are “relacing” fossil fuel tech with hydrogen tech, but
we understand how the text can make it seem like we are saying you can swap out one
for the other and that they are “equal” in terms of their role in the energy transition. We
have therefore gone through the text to try to be as careful as possible in terms of
expressing a technology switch for the end use applications, either a fossil fuel technology
or its hydrogen alternative/counterpart. We hope this clarifies our intent.

Line 67. “ The impact of energy transitions”. Similar to my comments on Line 46,

again in terms of framing of the question, I think the issue here is not energy

transition (from fossil fuel to clean energy), but the use of hydrogen as the

energy carrier, due to its high energy density, to fulfill the energy demand of

some applications that are hard to be electrified.  In plain language, there are

intense ongoing debate between battery powered EV vs. fuel cell cars. The study

here essentially addresses the underreported negative climate effects of the

latter.

We fully agree with the referee’s assessment. Due to other revisions of the manuscript



and a complete rewrite, reformulating, and reframing of our methods, this phrase and its
accompanying sentence have been removed.

The authors need to clarify that in the TWP calculation, by “continuous emission”

they had assumed constant emission rate after deployment. This is important

because if the short-lived compound emission is backloaded toward the end of

time horizon (i.e., with increased emission, a more likely case for hydrogen

economy scaling up), the cumulative forcing (and the associated warming) at

these longer time scale would be even higher than what TWP implies.

Yes, great point. “Constant emission rate after deployment” is much clearer than our
original phrasing, and we have therefore adopted this throughout the text and in the
figures.

Line 440. “Fig. 5 shows the anticipated temperature increase in 2050 based”.

Since the temperature response calculation here is simply a conversation from

the instantaneous radiative forcing at a given year, it’s assuming temperature

equilibrium very quickly which is not the case in the real world (and even in

simple climate models). The forcing*climate sensitivity is best known as

(geophysical, not socioeconomically) committed warming, which is always larger

than the “expected/anticipated” warming at certain point due to the response

time of climate system (check e.g.,

https://www.researchsquare.com/article/rs-969513/v1 or

http://www.pnas.org/content/early/2017/09/13/1618481114.abstract)

Fully agree that our simple temperature derivation does not apply to instantaneous
responses in any given year, and this is confusing in both original figures 4 and 5. In
response to this comment and comments by Referee #2, we have decided to remove
original Fig. 4 and revise original Fig. 5. We also modified and reframed our comparison
for original Fig. 5 (looking at sustained hydrogen demand levels and their long-term
temperature responses) and further revised the figure based on this referee’s feedback in
the minor comments section (markers and colors). Below is the new figure:



Figure 6: Long-term temperature responses (ºC) to different levels of hydrogen
leakage based on sustained hydrogen demand levels (Tg). Red/orange/yellow
markers and shading represent leakage levels of 10/5/1%. Uncertainty is based on
uncertainties in both hydrogen’s soil sink and therefore lifetime (~±20%) as well as
uncertainties in hydrogen’s radiative effects (~±20%). Markers indicate calculations and
shaded regions represent interpolation. Histogram and shaded grey area characterize
projections of hydrogen demand for the year 2050 in the published literature (see Table
3). The theoretical max is an estimate based on using hydrogen to supply total final
energy demand globally in 2050 based on decarbonization scenarios. 

Line 269. Why is the 50% estimate here a “conservative” one?

We considered this estimate to be conservative because not all the fossil fuel technologies
that are replaced with hydrogen alternatives are natural gas-driven and thus associated
with potentially high methane emissions. For example, many technologies are fueled by
gasoline, diesel, and coal. So it is quite possible that we were overestimating the avoided
methane emissions (as also demonstrated by the referee in the following comment) which
would overestimate the benefits of hydrogen applications, and thus be “conservative” in
the context of consequences of hydrogen. However, given that (1) the results highly
depend on the level of avoided carbon dioxide and methane; (2) we have no data for our
generic case on how much methane would be avoided; and (3) avoided carbon dioxide
and methane are functions of one another, we have decided to take a different approach
and consider a sensitivity analysis to explore this further. This has the added benefit of
clarity in how we handle methane emissions from blue hydrogen, which are now not
offset; we completely agree with the referee in that it was confusing and have struggled
with communicating our explanation of that decision.



The new analysis is as follows: We first test the sensitivity of our results to different levels
of avoided CO2, where we consider three different levels of avoided carbon dioxide
emissions (5, 10, 15 kg per 1 kg H2 deployed). Then for each level of avoided carbon
dioxide emissions we also calculate the resulting radiative impact from these emissions if
the CO2 is generated from burning natural gas. Burning 1 kg of natural gas emits 2.75 kg
of CO2 if the natural gas is almost entirely methane, and we consider methane leakage
rates from 1 to 3% as in the blue hydrogen production. Resulting emissions of methane
are shown in the new Table 4, and the results of the analysis for a time horizon of 20
years are shown in new Fig. 5:

Figure 5: Relative warming impact over time from replacing fossil fuel
technologies with green or blue hydrogen alternatives for different levels of
avoided carbon dioxide and methane emissions. Ratio of cumulative radiative forcing
of a constant emissions rate from deploying 1 kg of H2 continuously is used as a proxy of
relative warming impacts. Emissions from hydrogen alternatives are hydrogen for green
hydrogen and hydrogen and methane from blue hydrogen. Emissions from fossil fuel
technologies are carbon dioxide (solid bars) and carbon dioxide and methane (lined bars).
Emissions of hydrogen and methane include a range of plausible leak rates from 1% (best-
case) to 10% (worst-case) per unit H2 deployed for hydrogen and from 1% (best-case) to
3% (worst-case) for methane. The height of each bar corresponds to the range from
leakage. See Table 2 for emissions inputs for hydrogen and methane from hydrogen
applications, Table 4 for emissions of methane from fossil fuel technologies, and Table 1
and Eqns (1) – (8) for equations used in the calculation and input parameters.

This assumption of “additional” CH4 fugitive leakage need some more

justification. One can argue that nearly all CH4 usage here for generating H2

would otherwise be used as gas fuel. I think the author can quantify how much

energy supply from 1kg of H2 (~120 MJ) and calculate how much that can be

from CH4 equivalent (roughly 120/55=2.2 kg). Therefore, there is an additional

demand of 3.3-2.2=1.1 kg of CH4 if the purpose of CH4 here is to generate H2

(while losing some energy to the byproduct of CO2) as opposed to use it as

direct fuel.

If the derivation I worked out above make sense, the ratio is more likely to be

1.1/3.3=33%, as opposed to 50%. Of course, I only have spent 10 minutes

thinking about this. But I encourage the authors to check my argument and

make improvement in the assumption of fugitive CH4 leakage in the blue

hydrogen case.

We think we overcomplicated the previous analysis by lumping together the net impact on



methane emissions from switching technologies. Therefore, as described in the response
to the previous comment, we have completely recrafted how we represent methane
emissions for both blue hydrogen and fossil fuel technologies, and keep the emissions
separate. We hope our new approach is an improvement and much clearer, though we
note it is a large source of uncertainty because of the lack of data and how dependent it
will be on the specific fossil fuel technology and value chain pathway. Therefore, we have
added discussion about this in the paper and made it clear that this analysis needs to be
repeated on a case-by-case basis to truly understand the net effects. Our analysis
therefore provides a first-order approximation of potential diminished climate benefits and
a framework for further assessments. Case by case assessments are certainly needed as a
follow up in order to guide decision making and bring clarity to the magnitude of climate
benefits from each hydrogen application.

The text now reads (Line 565): “Climate benefits of clean hydrogen alternatives to fossil
fuel technologies also need to be assessed on a case-by-case basis, given (1) the
dependency of the leak rate on the production method, value chain pathway (i.e.
compression, storage, distribution), and end-use application; and (2) the dependency of
the benefits on the avoided greenhouse gas emissions which in turn depends on pathway,
application, fuel, and also location. While analysis of a generic hydrogen deployment case
is valuable for first-order insights, decisions will ultimately need to be made based on
implications for specific technological shifts.”

The authors accounts for the impact of H2 leakage on stratospheric water vapor

“ when this reaction (in Figure 1) occurs in the stratosphere”, which has a

warming effect. Had the authors or previous studies considered the emission of

water vapor due to direct combustion of H2 fuel (e.g., aviation in the

stratosphere)? Would that (>90% H2 not leaked) be more important than the

“climate consequences of hydrogen leakage”?

Good question. We have not considered the impact of the emission of water vapor in the
stratosphere due to direct combustion of H2 fuel such as via aviation. At this point we
think it is more likely that aviation will use synthetic fuels based on hydrogen as a
feedstock, but there is one report that we are aware of that does explore this (prepared
by McKinsey & Company for the Clean Sky 2 JU and Fuel Cells and Hydrogen 2 JU, 2020).
They conclude: “initial simulations of H2 direct combustion show that the formed ice
crystals of contrails are heavier (i.e., they precipitate faster), and contrails are optically
thinner (i.e., they are more “transparent”) [as compared to contrails from traditional
fuels]. As such, these water molecules lead to a lesser, briefer global warming effect –
resulting in a 30 to 50 percent reduction in impacts from contrail and cirrus formation
compared to kerosene aircraft.” However, more work is needed on this issue to determine
the climate impacts relative to leakage, and we have added mention of this effect in our
paper as an example of how important case-by-case analyses will be (Line 567): “For
example, if the hydrogen is burned in the stratosphere (for example from aircrafts), the
direct combustion of hydrogen could also increase stratospheric water vapor.”

Specific Comments:

I also have some specific comments, in the order of occurrence in the paper, for

the authors to consider during the revision phase.

Abstract:

On the first reading, I’m a bit confused by what are the worst-case and best-case

rates? Better to specify the numbers (worst is the 10% leakage rate later in Line

25?)



Great point – we have revised the text to reference the leakage rate value and do not use
“best” and “worst” in the abstract anymore.

Line 36. Can you add some details of how H2 can perturb the atm chem and lead

to increase in other GHGs? Is it true that H2 always leads to increase in other

GHGs or are there any second-order compensation effects?

Absolutely. We had initially included the details of H2’s impact on atmospheric chemistry
in Section 2 in order to tighten the intro before we went into further details. However,
based on this feedback and that of the Editor, we have moved that text into the intro, and
also revised Fig. 1 to be clearer about how H2 perturbs atmospheric chemistry.

The intro now reads (Line 51): “In the troposphere, less OH is available to react with
methane, and given that methane’s reaction with OH is its primary sink, this leads to a
longer atmospheric lifetime for methane which accounts for around half of hydrogen’s
total indirect warming effect (Paulot et al., 2021). Also in the troposphere, the production
of atomic hydrogen from hydrogen oxidation leads to a series of reactions that ultimately
form tropospheric ozone, a greenhouse gas, which accounts for about 20% of hydrogen’s
radiative impacts (Paulot et al., 2021). In the stratosphere, the oxidation of hydrogen
increases water vapor, which in turn increases the infrared radiating capacity of the
stratosphere, leading to stratospheric cooling and an overall warming effect on the climate
because energy emitted out to space is now from a cooler temperature; this stratospheric
effect accounts for about 30% of hydrogen’s climate impacts (Paulot et al., 2021). The
stratospheric cooling can also lead to an increase in stratospheric polar clouds that enable
more ozone-destroying reactions to occur, but to date those effects have been deemed as
minor (Tromp et al., 2003; Warwick et al., 2004, 2022; Jacobson, 2008; van Ruijven et
al., 2011; Vogel et al., 2011, 2012; Wang et al., 2013; Wuebbles et al., 2010; Derwent,
2018; Paulot et al., 2021).” The new Fig. 1 is:

Figure 1: Effects of hydrogen oxidation on atmospheric greenhouse gas
concentrations and warming.

We have also added text in the new discussion section to address the second question,
which is looked at in a new study by Warwick et al. (2022) that was published since we
submitted our paper. Essentially, all else equal, H2 emissions will lead to an increase in
other GHGs, however if emissions of other species change, there can be compensation
effects. For example, reductions in emissions of CO, NOx, and VOCs can lead to a smaller
increase in methane from H2. The tropospheric ozone responses is also dependent on



changes in emissions of other species, and reductions in CO, NOx, and VOCs can lead to a
decrease in tropospheric ozone even with increased H2 emissions.

The paper now reads (Line 557): “For example, all else equal, hydrogen emissions will
lead to an increase in other greenhouse gases. However, a new study shows that
reductions in emissions of carbon monoxide, nitrogen oxides, and volatile organic carbon
can lead to a smaller increase in methane’s lifetime from hydrogen (because more OH is
available), and a net decrease in tropospheric ozone (Warwick et al., 2022). These
complexities and interactions will need to be explored in assessing the climate effects of
decarbonization strategies.”

Line 64. I suggest delete “in hydrogen assessments” here.

Done!

Line 86. “has a positive forcing on the climate due to stratospheric cooling from

water vapor’s absorption of heat”. This is a bit confusing. Can be reworded to

explain why it’s a positive forcing (for the surface) f it leads to local cooling in

the stratosphere?

Definitely. We have reworded in the text as well as in Fig. 1 (Line 55): “In the
stratosphere, the oxidation of hydrogen increases water vapor, which in turn increases the
infrared radiating capacity of the stratosphere, leading to stratospheric cooling and an
overall warming effect on the climate because energy emitted out to space is now from a
cooler temperature; this stratospheric effect accounts for about 30% of hydrogen’s
climate impacts (Paulot et al., 2021).”

The lower-right of Fig 1 says stratospheric warming which contradicts the message here.
Please adjust. I think you meant surface warming due to stratospheric effects (Paulot
2021), not stratospheric warming.

Yes we definitely see how this is confusing and we have rephrased to “stratospheric
effects” (see above figure).

Line 134.  “Using the GWP formulas”.  Can you document the formula for it (and

also the TWP) since you used it multiple time for conversation of GWP and

radiative efficiency?

Absolutely. We have added all GWP formulas to the paper (Eqns (1) – (8)) and the input
parameters and sources in Table 1 (see below). Given that (1) TWP is just GWP with a
constant emissions rate and reporting of the results as a function of time horizon; (2) we
use new hydrogen GWP equations that would require new formal derivations of TWP; and
(3) it was clear from Referee #2’s feedback that our use of TWP and how it relates to GWP
was confusing and misunderstood, we decided to reframe our methodology through the
GWP lens with minor improvements, and not focus on the TWP metric except to mention
that this approach has a formal name and documentation. We therefore explain in the text
how we use the GWP equations but just adopt a constant emissions rate and report results
for various time horizons. Hopefully this is clearer.

Line 198: “To account for a constant emissions rate of each forcer as opposed to just a
pulse of emissions, we consider a new pulse of emissions every year. Assuming linearity,
the summation of the cumulative radiative forcing (AGWPi) from past and current pulses
for each year is equal to the cumulative radiative forcing from a constant emissions rate
(AGWPci). To account for multiple forcers emitted from each technology, we add up the
individual AGWPcis for each time horizon. Finally, to compare the climate impacts from
hydrogen technologies to their fossil fuel technologies counterparts, we simply divide their



AGWPcs (comparable to how GWP is calculated). The results are then presented as a ratio
of climate impacts (using cumulative radiative forcing as a proxy) as a function of time
between two different technologies (i.e. hydrogen alternatives vs. fossil fuel technologies).
A value of greater than 1 indicates that the alternative technology (in this case hydrogen)
has larger climate warming impacts at time horizon H than the original technology, and
vice versa for less than 1. In our analysis, we present the results as a percent change in
climate impacts (cumulative radiative forcing) from the original technology, such that 1 =
0% change (or equal), 0.5 = 50% decrease, 2 = 100% increase, etc.  

This concept – an extension of AGWP and GWP that considers a constant emissions rate
(as opposed to a one-time pulse) and calculates the relative climate effects over time (as
opposed to one specified time horizon such as over 100 years) – is further documented
and discussed in Alvarez et al. (2012), where it is called the Technology Warming
Potential. Several studies have used this metric to assess the climate impacts of different
technologies that emit multiple greenhouse gases with varying atmospheric lifetimes, to
show how the climate impacts of specific technologies change over time relative to one
another (Alvarez et al., 2012; Camuzeaux et al., 2015; Ocko and Hamburg, 2019).
However, given hydrogen’s unique AGWP equations resulting from its varying indirect
effects, we do not use the specific formulas derived in Alvarez et al. (2012), but rather
follow the calculation chain described above.”    

Fig 2. How exactly is the solid line of cumulative radiative forcing (Alvarez et al.,

2012) defined and calculated? Is that the same as GWP except for the

assumption of emission profile (continuous vs. instaneous)? What’s its unit? Is

that the same as Tech Warming Potential mentioned in the end of Introduction

section.

The calculation (what we call TWP) *is* GWP, but includes constant emissions (as
opposed to a pulse) and presents the results as a function of time horizon rather than for
just one time horizon. As in GWP, it is a ratio of two cumulative radiative forcings, so it is
unitless. We have rewritten the methods section to be clearer (Sect. 2.1), added text
when we discuss the figure, and reformatted original Fig. 2 based on the new hydrogen
GWP equations provided by Warwick et al. (2022). We now only look at combined
tropospheric and stratospheric effects, and panel (a) is for the pulse approach (GWP), and
panel (b) is for the constant emissions rate approach.

The supporting figure text reads (Line 348): “In Fig. 3b, we use an identical GWP
calculation except consider a constant emissions rate rather than pulse emissions. The
constant emissions rate approach is a more realistic representation of hydrogen leakage in
a hydrogen economy, as opposed to a one-time pulse of emissions, and also more
sensible in that you are calculating hydrogen’s warming effects compared to carbon
dioxide for cases where they are both impacting the atmosphere in each time horizon.”

The new figure is:



Figure 3: Warming potency of hydrogen relative to carbon dioxide using
cumulative radiative forcing as a proxy for (a) a one-time pulse of equal
emissions in mass (equals hydrogen’s Global Warming Potential) and (b) a
constant emissions rate of both hydrogen and carbon dioxide for equal emissions
in mass. Solid lines are for mean hydrogen lifetime and radiative effects. The dark shaded
areas correspond to a minimum and maximum hydrogen lifetime based on soil sink
uncertainty, and the light shaded areas represent a 20% uncertainty in the radiative
effects of hydrogen from its indirect effects and uncertainties in carbon dioxide’s radiative
properties. See Table 1 for all parameters used.

The paragraphs immediately after Fig 2 seems to be out of place. My

understanding is that discuss the caveats of the simple metric approaches

(constant radiative efficiency and H2 lifetime etc.). If so, maybe move it to a

later place of discussion.  (On a second read, maybe move it to be around Line

340).

Thanks for bringing this to our attention – we fully agree. We also note that with the
recent publication of Warwick et al. (2022), this aspect of our analysis has been greatly
improved with more confidence in the results in the near-term. Therefore, this discussion
text has changed accordingly. We have also moved the discussion of uncertainties to the
new discussion section, and it now reads (Line 546): “Beyond needing accurate
measurements of hydrogen emissions, more work is needed to improve understanding of
hydrogen’s atmospheric impacts. This is because far less work has gone into refining
hydrogen’s radiative effects compared to gases such as methane and carbon dioxide.
There is a need for more integrated chemistry-climate modelling to build confidence in and
refine the tropospheric and stratospheric radiative effects of hydrogen emissions. This is
especially true regarding gaining a better understanding of the climate impacts in the first
couple of decades after hydrogen is emitted to the atmosphere, given the complex
temporal dynamics of hydrogen’s indirect effects; to date there is only one study that
explores these near-term issues (Warwick et al., 2022).”

Line 150. Why 20 times?  I thought it’s more than that just eyeballing from solid

line of Fig 2b.

We had conservatively said “more than” 20 times because of the uncertainty in the
indirect effects in the years following emission. Now that this part of our analysis has been
greatly improved, the new value is “more than 10 times” and the math aligns with the
figure. We also note that the figure has also been modified to look at pulse emissions on



the left and continuous emissions on the right, both for radiative effects derived from new
equations from Warwick et al. (2022) that clarify temporal dynamics of H2’s indirect
effects. 

Line 153. Reword a bit. I guess you cannot call it GWP anymore.

This section has been rewritten to reflect the new results and figure, and we break up the
results into several paragraphs.

Section 4 title is “Climate implications of hydrogen leakage” which is actually the

paper title. Thus, I suggest move 4.1 and 4.2 to be Section 4 (Method) and 5

(Results) instead, and avoid sub-sub-title.

Yes, this Section title was close to the title of the paper. Based on this feedback and that
of the Editor, we have restructured the paper to sections of Intro, Methods, Results,
Discussion, and Conclusion, with only one subsection level for each.

Line 244. I think here Section 4.1.3 should be Section 4.1.1.

We rearranged the sections so that we discuss climate impact calculations first, and
emissions assumptions second.

Where does the factor of 3 come from in generating H2 from CH4? I thought it’s

more like (12+4)/4=4. It is because of the addition of H2O in the process to

provide more H atoms?

Natural gas is used as both a feedstock for H2 production and as a fuel source for the
required heat. There is a two-step process for H2 production that involves water in both
parts, which contributes additional H atoms:

CH4 + H2O --> 3H2 + CO (1)

CO + H2O --> H2 + CO2 (2)

The amount of CH4 needed will depend on the composition of the natural gas, the
efficiency of the reformer, and how much is needed as feedstock and fuel combined. It is
difficult to find published values, and based on public documents and private
communications we’ve found it can range anywhere from 2.5 to 4.5 times the mass of
hydrogen. Therefore, we use a central estimate of 3 times the mass of hydrogen because
it is in the middle for the published values, but it is on the lower end of all estimates we’ve
come across. This makes methane emissions assumptions from blue hydrogen applications
potentially on the conservative end.  

We’ve expanded discussion of this in the text to clarify (Line 269): “For blue hydrogen
production, methane is needed as both a feedstock and a heat source, and can be emitted
along the supply chain (upstream and midstream) before it is used for producing
hydrogen. The amount of methane needed to produce a unit mass of hydrogen will
depend on the composition of the natural gas, the efficiency of the reformer, and how
much is needed as feedstock and fuel combined. The amount needed is not well
documented in the published literature, and based on public documents and private
communications can range anywhere from 2.5 to 4.5 times the mass of hydrogen
(Budsberg et al., 2015; Kearney Energy Transition Institute, 2020). In this analysis, we
use a central estimate of 3 times the mass of hydrogen is needed in the form of methane.
This value is on the lower end of all estimates but in the middle for published values; this
makes methane emissions assumptions from blue hydrogen applications potentially
conservative.”



0.111 kg for 3*1.1*3%=0.099 kg?

3*1.1=3.33 kg is needed to produce 1.1 kg of hydrogen. But this 3.33 kg of methane is
the result *after* methane leakage, and is what is consumed. So, 3.44 kg is needed in
methane production to end up with 3.33 kg for hydrogen production if there is a 3%
leakage before the point of H2 production. 3.44*3% = 0.103 kg methane leaked.

Line 265. With CO2 leakage, it’s falling into the realm of grey hydrogen.

Grey hydrogen is using SMR without CCUS. Blue hydrogen incorporates CCUS. However,
CCUS efficiency can be 65% or 90% depending on the CC technology. Therefore, there
are still residual emissions of CO2 that will contribute to blue hydrogen’s climate impacts.

Table 1. The row for CO2 should be 11 for all cases.

Correct, but now we have redone the Table and do not include this value in the table, only
in the text.

The row of CH4 produced does not seem to agree with the add-up of Consumed

and Emitted. Please double check if this affects the main results presented later.

Yes you are right. There was an error in the table for worst-case CH4 but it was correct in
the analysis. Also, we had halved the leaks of methane to account for avoided methane
emissions from displacing the fossil fuel systems so that made the table more
complicated. However, as noted earlier, we have completely revised the way we address
avoided methane emissions – via a separate sensitivity analysis and new figure. As a
result, this table is now clearer, and the values add up in the way they are expected to.

Table 2. foot note b seems to duplicate the text right below Table 2.

Yes, they were similar. Given that we have revised our analysis of the temperature
impacts given feedback and the confusion of using an equilibrium climate sensitivity for
transient climate responses, this table is no longer in the paper. 

Here you also need to verify the assumption of energy composition in 2050. Does

the 2017 study assume the same fraction of coal/oil/gas as of now or (a more

likely) switch from coal to gas? Since coal emits more CO2 than gas (per unit of

energy supply), assuming a constant offset of 11 kg of CO2 can underestimate

the benefits of H2 because in the near-term the CO2 offset could be larger than

11.

Given that the Hydrogen Council (2017) analysis is based on specific fossil fuel
technologies replaced with hydrogen alternatives (such as hydrogen powering certain
vehicles and supplying the heat needed for industry), we are not as concerned about the
energy composition changing over time (because that is not how the avoided CO2
emissions are calculated). However, it’s true that over time these fossil fuel technologies
could become more efficient, and therefore less CO2 would be avoided in the future from
hydrogen applications relative to now. This is further motivation for our new sensitivity
analysis where we look at different levels of avoided CO2 (and methane) to see how it
affects the perceived benefits of hydrogen.

Line 286. What’s “avoided hydrogen emissions from displaced fossil fuel

combustion”??

There are some hydrogen emissions from fossil fuel combustion. What we meant here was
avoided H2 emissions from fossil fuel technologies no longer used. We have clarified this



in the text (Line 296): “We do not include hydrogen emissions that would be avoided from
the cessation of the combustion of fossil fuels, as well as other co-emitted climate
pollutants such as particulates, sulphur dioxide, and nitrogen oxides that contain a mix of
warming and cooling forcers.”

Line 310? What’ the assumption of relative magnitude of green vs blue hydrogen

evolving from 2020 to 2050.

Given our revision of the temperature analysis, we no longer use demand scenarios that
change over time. However, the assumption of the relative magnitude for green vs blue
hydrogen was estimated from a figure in a Hydrogen Council (2021) report and is as
follows. However, we only calculated absolute temperature impacts for hydrogen
emissions, and therefore it didn’t matter what the type of hydrogen production method
was.

Global
hydrogen
production
(Mtpa)

       

Hydrogen
type

2020 2025 2030 2035 2040 2045 2050

Blue 0 30 40 60 90 150 220

Green 0 10 40 60 100 180 330

Source: Hydrogen decarbonization pathways Potential supply scenarios, Hydrogen Council,
2021.

Line 313. “When considering climate impacts, we only account for emissions

from hydrogen leakage for total hydrogen demand ”

I’m confused. I thought you also include CH4 leakage from blue hydrogen?

This sentence was specifically referring to the temperature impacts analysis, where CH4
leakage from blue hydrogen was not included. We have clarified this in the text (Line
234): “Note that for the temperature analysis, we do not consider additional temperature
impacts from methane emissions associated with the natural gas supply chain utilized in
the production of blue hydrogen, as we want to focus on the absolute impacts from
hydrogen emissions in particular.”

Line 355 . 0.84 mW m-2 (Tg yr-1)-1)  Why is this a different number than the

3.64E-13 in Table 3? 

This number refers to an emissions-based radiative efficiency, whereas the number in the
original Table 3 was the burden-based radiative efficiency. However, we now use the GWP



equations and inputs derived in Warwick et al. (2022) for hydrogen’s impacts, and thus
are no longer using a burden-based radiative efficiency for calculating hydrogen’s effects
over time.

Line 370. Again, is the cumulative radiative forcing the same as the technology

warming potential (TWP)? Maybe it’s worth showing the equation set.

Yes, and we apologize for the confusion. We have greatly clarified our methods and
included equations, and moved away from referring to TWP as it confused the readers
more than it helped describe our method, and GWP with constant emissions rate is a more
accessible explanation of our approach.

Line 400. Again, need to justify the 50% assumption.

Based on the referee’s helpful comments, we have revised our analysis to include a
sensitivity test of different levels of avoided carbon dioxide and methane emissions from
fossil fuel technologies. Therefore, this text has changed and the main “TWP” figure is
simpler and only includes avoided carbon dioxide emissions as to not confuse the reader
on the net methane impacts. We then added a new figure to illustrate the impact of
avoided methane emissions on our results. 

Line 424. “continuing to use GWP-100 to calculate climate effects will not only

overlook near- and mid-term impacts on the climate,” How about using GWP20

as the authors had previous argued in 2017?

Yes, we had mentioned this strategy in original Line 132: “One strategy for indicating the
potency of short-lived climate pollutants is to report GWPs for two time horizons – one
that conveys near-term impacts (most commonly 20-year time horizon) and one that
conveys long-term impacts (100 years) (Ocko et al., 2017).”

However, at the time of submitting the article it was unclear how useful GWP20 would be
given the short lifetime of H2 of only a few years, and therefore we did not emphasize this
approach further. However, now that there has been more research on the temporal
dynamics of the indirect effects, we feel confident that GWP20 is a useful indication of
impacts in the near-term. Therefore, we are recommending our dual GWP approach (Ocko
et al. 2017) for evaluating H2’s climate impacts. The text now reads (Line 527): “But if
GWP-100 is relied on exclusively, the near- and mid-term warming power of hydrogen is
masked, and therefore the anticipated climate benefits from deploying hydrogen are
perceived to be much higher over the next few decades than in reality. However, we find
that a dual approach of using both GWP-20 and GWP-100 adequately captures the climate
impacts of hydrogen over all timescales, and therefore is a straightforward way to
effectively understand temporal trade-offs across hydrogen deployment
opportunities.” And (Line 593): “(2) employ climate metrics and/or models that effectively
reflect the role that hydrogen could play in meeting net zero goals in the desired time
frames – this means not exclusively relying on GWP-100 and potentially adopting a dual
GWP-20/GWP-100 approach (Ocko et al., 2017)…”

Fig 5. Would you make it a colored graph?   Also did you really run the

calculation for various levels of assumption of final energy demand (y-axis), or

it’s really an extrapolation based on the 20%, 50%, 100% cases shown in Fig 4?

If it’s the later, it’s best show those actual data points in markers.

We have completely revised this figure based on feedback of the temperature calculation
as well as this comment. We did run the calculation for various levels of assumptions of
final energy demand (every 10% starting at 10%). Regardless, we agree that it’s best to
show the actual data points in markers rather than a line. Further, because the final



energy demand also depends on the energy pathway scenario (1.5C world, 2C world, no
further action world, etc), we have decided to reframe as temperature response to levels
of H2 consumption, with indications of what each level may be associated with in terms of
previously published projections. The new figure is:

Figure 6: Long-term temperature responses (ºC) to different levels of hydrogen
leakage based on sustained hydrogen demand levels (Tg). Red/orange/yellow
markers and shading represent leakage levels of 10/5/1%. Uncertainty is based on
uncertainties in both hydrogen’s soil sink and therefore lifetime (~±20%) as well as
uncertainties in hydrogen’s radiative effects (~±20%). Markers indicate calculations and
shaded regions represent interpolation. Histogram and shaded grey area characterize
projections of hydrogen demand for the year 2050 in the published literature (see Table
3). The theoretical max is an estimate based on using hydrogen to supply total final
energy demand globally in 2050 based on decarbonization scenarios. 

Also, the extrapolation to 0% is problematic; why would the warming be more

than zero if there is no hydrogen use after all?

This was an error, as the starting point in the x-axis was supposed to say 10%.
Regardless, bad form to start at 10% and so it would have been confusing even with the
label included.

Line 565. “Derwent, R. G.: Hydrogen for Heating: Atmospheric Impacts, Ph.D.,

Department for Business, Energy & Industrial Strategy, 2018.”  Can you specify

the citation source?



Yes, we have revised the citation and provided a link to the report.

Derwent, R. G.: Hydrogen for Heating: Atmospheric Impacts, Department for Business,
Energy & Industrial Strategy, https://assets.publishing.service.gov.uk/government/upload
s/system/uploads/attachment_data/file/760538/Hydrogen_atmospheric_impact_report.pd
f, 2018.

-----------------------------------------------------------------------------------------

Referee #2

The paper is about climate impacts of hydrogen leakages, a timely and important

topic. Even though the authors have good knowledge about previous studies and

the introduction is well-written, unfortunately, I cannot recommend publication

of this paper in ACP.  I do not think this paper substantially contribute with new

knowledge in the field and I do not think the results are discussed in an

appropriate and balanced way. To me, this paper is a bit misleading, and it looks

more like an opinion piece about their metric being much better than GWP100.

The figures are a bit confusing, and I would argue, sometimes wrong. Figure 4

and 5 shows ECS (equilibrium, and not transient!) for each year, do the authors

assume the climate reach equilibrium in an instant? Also, the paper only

interprets already published data and the authors do not state this very clearly. I

am also confused about how the authors compare the impacts of hydrogen

emissions and CO2 emissions.

We greatly appreciate Referee #2’s time in reviewing our manuscript, and responding to
their feedback has made the paper substantially stronger. In addition, we think that there
were several misunderstandings that we hope we have clarified in the responses below
and also in the manuscript. Overall, we have:

Emphasized and made clearer how our study contributes to new knowledge in the field
For example, in the abstract: “For the first time, we show the strong dependence on
timescale when evaluating the climate change mitigation potential of clean hydrogen
alternatives, with the emissions rate determining the scale of climate benefits or
disbenefits.”

Separated our discussion of the results so that the interpretation and implications of
the results are now included in a new Discussion section, and the Results section just
focuses purely on the results of the analyses
Considerably revised our discussion of metrics and our methodology as to not imply
that this paper is about metrics and especially one metric being better than another,
also toned down any discussion about GWPs, removing language like “misleading” and
“limited value”
Revised the calculations of hydrogen’s warming effects based on newly published
scientific insights that greatly improve the temporal dynamics of its indirect effects; this
had the result of greatly improving estimates of hydrogen’s “GWP” in the following
years after its emission, and made the original Fig. 2 much more robust
Removed original Fig. 4 and redid the analysis for Fig. 5 as to not imply that
temperature impacts occur instantaneously
Clearly stated in the abstract and elsewhere that our study uses already published data

“This paper evaluates the climate consequences of hydrogen emissions over all
timescales by employing already published data to assess its potency as a climate
forcer, evaluate the net warming impacts from replacing fossil fuel technologies with
their clean hydrogen alternatives, and estimate temperature responses to projected
levels of hydrogen demand.”

Rewrote the methods section and included all relevant equations and input parameters
to better explain how we compare impacts of hydrogen, methane, and carbon dioxide



emissions

Below we respond point-by-point to both major and minor comments.

Not a balanced discussion on GWP100:

The authors state many, many places in the manuscript that using GWP100 is

wrong (e.g. L10: “To date, hydrogen’s warming effects have been primarily

characterized using the GWP-100 metric—which is misleading for short-lived

gases, such as hydrogen, as it obscures impacts on shorter timescales.”), even

though this is the standard and official metric by UNFCCC. No metric is perfect,

but this is not unique to hydrogen, and I don’t think the authors address this in a

well-balanced way, for instance see Boucher and Reddy, 2008 for a description

on how to use GWP100 for SLCFs. Since the authors want to bring this discussion

to the manuscript, I find it problematic that there is a lack of discussion of other

more widely used alternative metrics such as GWP*, GTP or cGTP, the latter two

of which are both suggested as suitable metrics for short-lived climate forcers by

the IPCC (Forster et. al 2021). GWP100 has an advantage of being comparable to

published literature and provides a measure for a time well after the effects of

hydrogen have reached steady state. GWP20 will underestimate the long-term

effects of CO2 but this is not mentioned at all. Shine et al. (2005) and Allen et al.

(2016) also stress that short time horizon lead to overestimates of short lived

climate forcers. This is because GWP is an integrated metric in contrast to end-

point metrics such as GTP.

We thank the referee for bringing to our attention that the paper could be interpreted in
this way. We never meant to imply that GWP-100 is “wrong” (and never used the word
“wrong”), but rather that when it is relied on exclusively for understanding the impacts of
short-term forcers, it misses the impacts in the near-term – which could lead to
suboptimal outcomes from climate policies and decarbonization strategies. However, while
the GWP-100 issue with hydrogen partially motivated this study, it does not need to be a
focus of the paper – and the analysis and results stand on their own. Rereading the paper
through the lens of the referee made it clear that the majority of the GWP conversation in
our paper is a distraction and largely unnecessary. We do not want this to be a “metrics”
paper” – rather, we want it to be a paper improving the understanding of the climate
significance of hydrogen leakage. Therefore, we have removed the majority of text that
implied GWP-100 is “wrong,” and taken a more objective and balanced approach. For
example, we completely agree that GWP-20 has its own shortcomings (which is why we
suggest using both GWP-20 and GWP-100 as an inseparable pair as neither on its own is
sufficient but combined can adequately convey impacts across all relevant timescales).
And we also agree that GWP-100 can falsely imply that short-lived forcers have a big
impact on the climate in the long-term). We are now more explicit about the pros and
cons of GWP in our paper.

For example: (Line 106): “The third challenge is how hydrogen’s warming impacts are
calculated and reported. Beyond the general uncertainties associated with estimating the
direct and indirect radiative effects of any atmospheric constituent, the way in which
scientists typically report the radiative potency of a climate forcer (such as via radiative
efficiency or radiative forcing) can be inaccessible to and lack context for climate policy
and business decision makers. Therefore, decades ago, scientists began developing
simplified metrics for comparing the warming impacts among different greenhouse gases,
with CO2’s potency typically as the baseline for the comparison given its status as the
most concerning human-emitted climate forcer. The most well-known and widely-used
metric has consistently been the Global Warming Potential (GWP) with a 100-year time
horizon, and is even baked into policies, international agreements, and greenhouse gas
reporting requirements. GWP calculates the relative warming effect over a specified time



interval from a pulse of emissions of a climate forcer compared to an equal pulse in mass
of CO2. 

However, mostly because of its pulse approach, using this method to compare the climate
effects between a climate forcer whose impacts are short-lived (such as hydrogen, and
most notably methane) and a climate forcer whose impacts are long-lived (such as CO2)
is complicated. For example, if a 100-year time horizon is used, it masks the true impact
of hydrogen during the decades in which it is influencing the climate, providing the
inaccurate perception that hydrogen’s warming effects are much smaller than they are. On
the other hand, it also provides the inaccurate perception that a pulse of hydrogen can
influence the climate 100 years later. If a 20-year time horizon is used, it is more
representative of hydrogen’s impacts while it is affecting the atmosphere, but it disregards
CO2’s impacts after 20 years, when it is still affecting the atmosphere.” 

Further, we think there is a misunderstanding of our metrics approach, which we take full
responsibility for and have greatly clarified in the text. This is because we do primarily use
the GWP metric in our analysis, we just incorporate constant emissions of forcers (as
opposed to a one-time pulse) and present our results as a function of time horizon
(instead of for one time horizon). A motivation for using the GWP equations (as opposed
to other metrics) is that they are easily understood by non-scientists stakeholders, and we
want our results to be as accessible as possible. However, presenting the results for all
timescales is key to adequately conveying the climate consequences of hydrogen
alternatives relative to fossil fuel technologies, given the differences in timescales of their
effects. Further, using constant emissions is also important because it is a more realistic
representation of hydrogen leakage in a hydrogen economy, as opposed to a one-time
leak, and also makes more sense in that you are calculating hydrogen’s warming effects
compared to carbon dioxide for cases where they are both impacting the atmosphere in
each time horizon. Technology Warming Potential (TWP) is just the formal published title
for this approach – GWP for constant emissions and for all time horizons. It seems that
there was a lot of confusion regarding our discussion and use of TWP (also noted in
Referee #1’s comments), and therefore we have moved away from calling our
methodology throughout by its formal name because it will likely be better understood as
simply using GWP for constant emissions and all time horizons. We do keep a few
mentions of it, however, to acknowledge its formal publication in the literature, and to
direct readers to more information on it.

The text now reads (Line 148): “Overall, the question remains: how will hydrogen’s full
atmospheric warming impacts diminish its effectiveness as a decarbonization strategy
across all timescales? While more sophisticated modelling will be needed to fully
incorporate all complexities, interactions, and uncertainties described above, a first-order
analysis is possible using already published data with minor improvements to the standard
GWP metric to assess impacts over time and account  for constant emissions. A constant
emissions rate, as opposed to a one-time pulse of emissions, is important because
continuous emissions more realistically represent hydrogen emissions in a hydrogen
economy. In this work, we examine the net climate impacts over time for a generic case
of replacing fossil fuel technologies with clean hydrogen alternatives using a plausible
range of future hydrogen emission rates. We also include emissions of methane associated
with blue hydrogen production for a range of plausible leak rates. We use newly published
GWP equations for hydrogen’s indirect effects (Warwick et al. 2022) and report the
outcomes of constant emissions for time horizons of 10 to 100 years. 

The approach utilized is known as the Technology Warming Potential (Alvarez et al.,
2012), and is similar to that of a life cycle assessment in that it compares climate impacts
from two alternative technologies to help inform decision makers of the net benefits of
switching from one to another. This method retains the familiar GWP formulation but
conveys the climate implications over time from a sustained switch to hydrogen



alternatives from fossil fuel technologies.  Further, we use a simple approach to estimate
temperature responses to projected hydrogen demand levels, providing an indication of
the absolute climate consequences of hydrogen emissions.”

Finally, given that we have toned down the discussion of metrics, do in fact use GWP, and
have moved away from referring to TWP, we do not think it is necessary to go into a
discussion of other widely used alternative metrics such as GWP*, GTP or cGTP. We do not
want to distract readers from the focus of our study, which is improving general
understanding of the climate consequences of hydrogen leakage. Further, we note that
GWP* and cGTP metrics were designed to improve comparisons of short-lived climate
forcers to long-lived forcers specifically regarding climate stability, long-term temperature
goals, and CO2 removals, and therefore are not necessarily appropriate for our paper
where we specifically want to improve understanding of near-term impacts. And, as the
referee pointed out, no metric is perfect and GWP is the official metric of the UNFCCC,
further justifying our use of GWP. Overall, we have decided to provide a brief
acknowledgment of the complex history of metrics.

The text now reads (Line 123): “This temporal issue of comparing warming impacts of
short- and long-lived climate forcers has been extensively discussed in the literature for
decades and has been a major source of confusion in the climate policy community; it has
also led to the development of numerous alternative metrics designed to improve the
comparisons (Shine et al., 2007; Alvarez et al., 2012; Allen et al., 2016; Cherubini and
Tanaka, 2016; Ocko et al., 2017; Fesenfeld et al., 2018; Balcombe et al., 2018; Ocko and
Hamburg, 2019; Cain et al., 2019; Collins et al., 2020; Severinsky and Sessoms, 2021;
Lynch et al., 2021). However, stakeholders continue to rely on GWP as their way to
understand the potency of any non-CO2 climate forcer, and specifically GWP with a
100-year time horizon (GWP-100).”

L66: “Given hydrogen’s known indirect greenhouse gas properties and unknown

leak rates, we use a metric for looking at the impacts of energy transitions on

net radiative forcing over time called Technology Warming Potential (Alvarez et

al., 2012) that considers continuous emissions, providing a more realistic

understanding of the climate impacts of fuel switching.” I read this as the only

possible metric for estimating climate impact of continuous emissions – GWP100

can also be estimated for continuous emissions.

We have removed this sentence from the paper. As mentioned above, we do in fact use
GWP for continuous emissions, and we certainly don’t mean to imply that TWP is the only
metric that can do this.

The text in the introduction now reads (Line 149): “While more sophisticated modelling
will be needed to fully incorporate all complexities, interactions, and uncertainties
described above, a first-order analysis is possible using already published data with minor
improvements to the standard GWP metric to assess impacts over time and account for
constant emissions. A constant emissions rate, as opposed to a one-time pulse of
emissions, is important because continuous emissions more realistically represent
hydrogen emissions in a hydrogen economy. In this work, we examine the net climate
impacts over time for a generic case of replacing fossil fuel technologies with clean
hydrogen alternatives using a plausible range of future hydrogen emission rates. We also
include emissions of methane associated with blue hydrogen production for a range of
plausible leak rates. We use newly published GWP equations for hydrogen’s indirect effects
(Warwick et al. 2022) and report the outcomes of constant emissions for time horizons of
10 to 100 years.

The approach utilized is known as the Technology Warming Potential (Alvarez et al.,
2012), and is similar to that of a life cycle assessment in that it compares climate impacts



from two alternative technologies to help inform decision makers of the net benefits of
switching from one to another. This method retains the familiar GWP formulation but
conveys the climate implications over time from a sustained switch to hydrogen
alternatives from fossil fuel technologies.”

L112: As several previous studies have shown, relying on GWP-100 for

understanding the importance of short-lived greenhouse gases relative to carbon

dioxide is misleading (Alvarez et al., 2012; Ocko et al., 2017; Ocko and Hamburg,

2019)”. These ‘several’ papers only refers to papers from the authors themselves

and I am not particularly blown away by this list of self-citations on the topic.

We have removed this statement from the text, and no longer refer to GWP-100 as
“misleading.”

L131: “Given hydrogen’s short atmospheric lifetime of only a few years,

reporting hydrogen’s potency in GWP-100 has limited value. One strategy for

indicating the potency of short-lived climate pollutants is to report GWPs for two

time horizons – one that conveys near-term impacts (most commonly 20-year

time horizon) and one that conveys long-term impacts (100 years) (Ocko et al.,

2017) “  GWPs always have a time horizon where integration stops, GWP20 will

not then consider long-term effects of CO2. GWP20 will underestimate the long-

term effects of CO2, but the authors do not mention this at all, I find this

problematic.

We agree completely that this point should be mentioned, and have added it to the text
(Line 121): “If a 20-year time horizon is used, it is more representative of hydrogen’s
impacts while it is affecting the atmosphere, but it disregards CO2’s impacts after 20
years, when it is still affecting the atmosphere.”

L142: “However, assessing the impact of hydrogen through a pulse of emissions

is also problematic. This is because continuous emissions are a better

representation of actual hydrogen deployment. To better understand the climate

effects of hydrogen over all timescales, one would need to consider the radiative

effects of continuous emissions over time (Alvarez et al., 2012).”  But the

authors have already converted the radiative effects calculated by Paulot et al

2021 and here they also use continuous emissions.

Yes, we see how this is confusing. We had used Paulot et al. 2021’s radiative efficiency
based on H2’s burden, which was derived from continuous emissions of hydrogen.
However, the radiative efficiency can be applied to pulse emissions as well as continuous
when using the GWP equations, and in this sentence we were justifying our use of
continuous rather than pulse emissions in our analysis. Based on the referee’s comment,
we have completely rewritten this text, and also note that our calculations of H2’s GWP
have changed given a new publication that derives new GWP equations for resolving the
temporal dynamics of hydrogen’s indirect effects in the near-term (Warwick et al. 2022;
see response to Comment 2 for more information). Therefore, we no longer use Paulot et
al.’s efficiency. We do note however that the resulting radiative efficiency per unit burden
of H2 from Warwick et al. 2022 is similar to that from Paulot et al. 2021.

The text now reads (Line 149): “While more sophisticated modelling will be needed to fully
incorporate all complexities, interactions, and uncertainties described above, a first-order
analysis is possible using already published data with minor improvements to the standard
GWP metric to assess impacts over time and account for constant emissions. A constant
emissions rate, as opposed to a one-time pulse of emissions, is important because
continuous emissions more realistically represent hydrogen emissions in a hydrogen
economy. In this work, we examine the net climate impacts over time for a generic case



of replacing fossil fuel technologies with clean hydrogen alternatives using a plausible
range of future hydrogen emission rates. We also include emissions of methane associated
with blue hydrogen production for a range of plausible leak rates. We use newly published
GWP equations for hydrogen’s indirect effects (Warwick et al. 2022) and report the
outcomes of constant emissions for time horizons of 10 to 100 years.

The approach utilized is known as the Technology Warming Potential (Alvarez et al.,
2012), and is similar to that of a life cycle assessment in that it compares climate impacts
from two alternative technologies to help inform decision makers of the net benefits of
switching from one to another. This method retains the familiar GWP formulation but
conveys the climate implications over time from a sustained switch to hydrogen
alternatives from fossil fuel technologies.”

Line 376: “The benefit of the Technology Warming Potential method is that we

can analyse climate impacts over multiple time periods of interest—in the near-,

medium-, and long-term—insights that are not available with the use of the

GWP-100 metric. This is important when short-lived climate pollutants are

emitted as they are often reported and assessed based on the long-term impact

of a pulse emission, which overlooks their true impacts during the time they are

active in the atmosphere.”

We’re not sure what the comment here is, but based on previous comments, we can
surmise that the referee is pointing out how our text makes it seem like TWP and GWP100
are the only options and GWP100 is wrong and TWP is right. This was not our intention,
and we have rewritten the text to tone down the language discussing GWP100 and the
better explain our methodology in that it is based on GWP (Line 149): “While more
sophisticated modelling will be needed to fully incorporate all complexities, interactions,
and uncertainties described above, a first-order analysis is possible using already
published data with minor improvements to the standard GWP metric to assess impacts
over time and account for constant emissions. A constant emissions rate, as opposed to a
one-time pulse of emissions, is important because continuous emissions more realistically
represent hydrogen emissions in a hydrogen economy. In this work, we examine the net
climate impacts over time for a generic case of replacing fossil fuel technologies with clean
hydrogen alternatives using a plausible range of future hydrogen emission rates. We also
include emissions of methane associated with blue hydrogen production for a range of
plausible leak rates. We use newly published GWP equations for hydrogen’s indirect effects
(Warwick et al. 2022) and report the outcomes of constant emissions for time horizons of
10 to 100 years.

The approach utilized is known as the Technology Warming Potential (Alvarez et al.,
2012), and is similar to that of a life cycle assessment in that it compares climate impacts
from two alternative technologies to help inform decision makers of the net benefits of
switching from one to another. This method retains the familiar GWP formulation but
conveys the climate implications over time from a sustained switch to hydrogen
alternatives from fossil fuel technologies.”

And (Line 173): “To calculate the warming effects of hydrogen, methane, and carbon
dioxide emissions, we use the traditional GWP metric but account for constant emissions
rather than a pulse of emissions.”

L418: “However, even the standard GWP-100 approach undervalues the

cumulative radiative forcing over a 100-year time period given its reliance on

pulse, instead of continuous, emissions (Fig. 3).”

Again we surmise that the comment is on the negativity of GWP-100 and that GWP can be
used for continuous emissions whereas we imply that it can’t. We have removed this



sentence, but what we meant here is that accounting for a constant emissions rate means
that you are comparing the 100-year integrated warming impact for H2 and CO2 when
they are both still affecting the atmosphere. Overall, we have toned down references to
GWP-100’s shortcomings and discuss the pulse vs constant emissions rate implications
independently. For example, (Line 149): “While more sophisticated modelling will be
needed to fully incorporate all complexities, interactions, and uncertainties described
above, a first-order analysis is possible using already published data with minor
improvements to the standard GWP metric to assess impacts over time and account for
constant emissions. A constant emissions rate, as opposed to a one-time pulse of
emissions, is important because continuous emissions more realistically represent
hydrogen emissions in a hydrogen economy. In this work, we examine the net climate
impacts over time for a generic case of replacing fossil fuel technologies with clean
hydrogen alternatives using a plausible range of future hydrogen emission rates. We also
include emissions of methane associated with blue hydrogen production for a range of
plausible leak rates. We use newly published GWP equations for hydrogen’s indirect effects
(Warwick et al. 2022) and report the outcomes of constant emissions for time horizons of
10 to 100 years.”

Figures are misleading

Figure 2: – do the authors suggests that GWP_0 can be used?  How did you

estimate the numbers in Fig. 2? Do you assume the same lifetime for the indirect

effects of hydrogen here? If that is the case, this figure is not correct.

No, we do not suggest that GWP_0 can be used, and we had stated in the original text
(original Line 164): “However, given that hydrogen’s radiative effects are entirely indirect,
any time horizon shorter than the lifetime of hydrogen (in which the required reactions
have not yet taken place) will not provide a meaningful GWP result.”

The numbers in original Fig. 2 were calculated by using the standard equations for Global
Warming Potential (simple exponential decay for H2 and the more complex decay function
for CO2 as in IPCC AR5 and AR6), for either a pulse of emissions or for constant
emissions. We did assume one lifetime for H2 that applied to its indirect effects, which we
agree was not optimal for early time horizons when the indirect effects are playing out
over different timescales. However, at the time of submission there was a lack of
quantification on how these indirect effects evolve. One way we approached this limitation
was by averaging climate impacts over the first fives years in our original Fig. 3 that
showed the relative climate impact from replacing fossil fuel technologies with hydrogen
alternatives (original Line 336): “Further, given that the effects of hydrogen emissions are
entirely indirect, we average the climate impacts over the first five years after initial
emission to account for the individual timelines in chemical responses and to remain
conservative during the first few years where hydrogen potency would strongly outweigh
that of carbon dioxide if considered an instantaneous effect (recall that the radiative
efficiency of hydrogen is around 200 times that of carbon dioxide for equal mass). For
example, Field and Derwent (2021) suggest that the tropospheric ozone response is
immediate, but that the methane response takes a few years to reach its full potential.”

In addition, we had highlighted the need for chemistry-climate models to further evaluate
this aspect to improve understanding of hydrogen’s warming effects during short time
horizons (original Line 164): “Further, while Field and Derwent (2021) suggest that the
tropospheric ozone effects are nearly immediate, the methane effects may take a few
years to build up. This highlights the need for a more integrated chemistry-climate
modelling approach to accurately determine the tropospheric and stratospheric radiative
effects of hydrogen leakage in the first several years after emission.” 

Not only do we see how our handling and discussion of this limitation could have been



stronger, but new published research since we submitted the paper (Warwick et al. 2022)
provides, for the first time, explicit quantitative insights into the temporal dynamics of
hydrogen’s indirect effects. This is what we had mentioned was needed by the scientific
community to improve the GWP over time assessment. This new study derives Absolute
Global Warming Potential equations specifically for hydrogen emissions based on the
different indirect effects (methane, tropospheric ozone, and stratospheric water vapor; see
Eqns (3) – (8) in our revised manuscript and Table 1 for input parameters). Therefore, we
now use these equations in our analysis which has greatly resolved the estimation of
hydrogen’s GWP in time horizons “0” to around 20. The figure (below) now makes much
more intuitive sense in the early years, although we note that time horizons from 20-100
still have similar results as the first version.

Figure 3: Warming potency of hydrogen relative to carbon dioxide using
cumulative radiative forcing as a proxy for (a) a one-time pulse of equal
emissions in mass (equals hydrogen’s Global Warming Potential) and (b) a
constant emissions rate of both hydrogen and carbon dioxide for equal emissions
in mass. Solid lines are for mean hydrogen lifetime and radiative effects. The dark shaded
areas correspond to a minimum and maximum hydrogen lifetime based on soil sink
uncertainty, and the light shaded areas represent a 20% uncertainty in the radiative
effects of hydrogen from its indirect effects and uncertainties in carbon dioxide’s radiative
properties. See Table 1 for all parameters used.

I think Fig. 3 is very misleading as it shows a timeline with years after

technology switch with cumulative radiative forcing and does not take lifetime

into account if I understand this correctly.

This figure is based on the GWP equations using a constant emissions rate, and therefore
lifetimes are certainly taken into account (such as impacts of CO2 building up in the
atmosphere whereas H2 and CH4 are shorter-lived on the order of decades). This is why
there are more benefits to H2 the longer the time horizon, because you are avoiding an
accumulation of CO2 in the atmosphere.

However, our original analysis and figure did not take into account the individual lifetimes
of H2’s indirect effects given the lack of quantification in published research at the time of
submission (this is why we had averaged the results from years 0-5). However, with the
publication of Warwick et al. (2022), we are able to greatly improve our analysis, and now
we are able to make use of new GWP equations that specifically tease out the individual
impacts of each H2 indirect effect over time (methane, tropospheric ozone, and



stratospheric water vapor). Therefore, we use these equations to look at impacts from
continuous emissions (constant emissions rate) of H2, CH4, and CO2 and their impact on
cumulative radiative forcing for each time horizon. The new figure is as follows:

Figure 4: Relative warming impact over time from replacing fossil fuel
technologies with green or blue hydrogen alternatives for a generic case. Ratio of
cumulative radiative forcing of a constant emissions rate from deploying 1 kg of H2
continuously is used as a proxy of relative warming impacts. Emissions from hydrogen
alternatives are hydrogen for green hydrogen and hydrogen and methane from blue
hydrogen. Emissions from fossil fuel technologies are carbon dioxide, estimated at 11 kg
CO2 avoided per 1 kg H2 deployed based on estimates from Hydrogen Council (2017).
Emissions of hydrogen and methane include a range of plausible leak rates from 1% (best-
case) to 10% (worst-case) per unit H2 deployed for hydrogen and from 1% (best-case) to
3% (worst-case) for methane. The height of each bar corresponds to the range from
leakage. See Table 2 for emissions inputs for hydrogen and methane, and Table 1 and
Eqns (1) – (8) for equations used in the calculation and input parameters. more details on
emissions assumptions and Table 3 for radiative properties and decay functions used.
Error bars represent uncertainties in both hydrogen’s soil sink and therefore lifetime (solid
lines) as well as uncertainties in hydrogen and carbon dioxide’s radiative effects (~±20%;
dashed lines). Corresponding GWP results (only difference is pulse emissions rather than
constant emissions rate) are shown using the “x” and “o” markers.

Figure 4 is even more misleading as it shows a -timeline- of ECS, and not

transient. You then assume that the climate has reached equilibrium in an

instant? This comment also goes to Fig 5. I do not agree that these figures can

be published.

We appreciate the feedback and agree with the referee that showing a temporal evolution
of temperature responses based on ECS misrepresents the physics and is confusing. We
have therefore removed this figure and completely revised original Fig. 5 as to not frame
the analysis as anticipated temperature impact in a certain year, but rather the eventual
warming impact from a sustained level of H2 demand based on several leak rates. The
new figure is as follows:



Figure 6: Long-term temperature responses (ºC) to different levels of hydrogen
leakage based on sustained hydrogen demand levels (Tg). Red/orange/yellow
markers and shading represent leakage levels of 10/5/1%. Uncertainty is based on
uncertainties in both hydrogen’s soil sink and therefore lifetime (~±20%) as well as
uncertainties in hydrogen’s radiative effects (~±20%). Markers indicate calculations and
shaded regions represent interpolation. Histogram and shaded grey area characterize
projections of hydrogen demand for the year 2050 in the published literature (see Table
3). The theoretical max is an estimate based on using hydrogen to supply total final
energy demand globally in 2050 based on decarbonization scenarios. 

Data

The authors are not very clear in their abstract that all the data they interpret is

one data set from one model - and that data set is already published. It is totally

fine to do that – but it must be stated clearly that this is an interpretation of

already published data.

We agree that this needs to be more explicitly stated. However, we note that we take data
from several sources overall, and that the hydrogen data is now from two studies that are
consistent with one another in terms of the total radiative efficiency of a change in the
burden of hydrogen. The abstract now reads (Line 15): “This paper evaluates the climate
consequences of hydrogen emissions over all timescales by employing already published
data to assess its potency as a climate forcer, evaluate the net warming impacts from
replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate
temperature responses to projected levels of hydrogen demand.” And the intro now reads
(Line 149): “While more sophisticated modelling will be needed to fully incorporate all



complexities, interactions, and uncertainties described above, a first-order analysis is
possible using already published data with minor improvements to the standard GWP
metric to assess impacts over time and account for constant emissions.” 

L347: “In the absence of models capable of interactively simulating the

chemistry, radiation, and temperature responses in the full atmosphere to

hydrogen emissions, we apply the simple approach used by Paulot et al. (2021)

to approximate temperature responses to the three hydrogen demand scenarios

discussed in Sect. 4.1.1.”  Paulot et al 2021 did use a model capable of

simulating chemistry and radiation response to hydrogen emissions, that is what

their paper is about - the way this is written it seems like you are calculating

these effects yourself? Again, this is repeated in L471: “To our knowledge, no

model is currently capable of interactively simulating the chemistry, radiative

forcings, and temperature impacts from hydrogen emissions into the full

atmosphere.” Then I am left to wonder – why do you rely so heavily on the GFDL

model from Paulot et al. 2021 in your analysis, if you don’t believe in the results?

We apologize for the misunderstanding here. We never mean to imply that we don’t
“believe in” the results of Paulot et al. 2021 nor did we mean to misrepresent the Paulot et
al. study and our own. Paulot et al. 2021 was a major step in the scientific understanding
of hydrogen’s full impacts on both the troposphere and stratosphere. We were only
referring to the point that Paulot et al. (2021) used a model that (at the time) was not
capable of a fully interactive simulation of climate responses to hydrogen emissions.
Specifically, the response of methane’s lifetime on methane concentrations is not
accounted for in the model because methane concentrations are prescribed (page 13454).
Therefore, they must conduct another experiment where they increase methane
concentrations separately. They also use a simple approximation of temperature impact
instead of a model-simulated one, and we assume that if the model was capable of
assessing temperature impacts to hydrogen emissions, they would have used the model
and not the simple estimate.

Our main point was that no models we were aware of could perform the simulations
needed to estimate a transient temperature response to hydrogen emissions, and
therefore for now we would rely on a simple calculation to at least get a sense of order of
magnitude and to hopefully inspire more sophisticated modeling assessments to look into
this. This being said, we have been in conversations with different modeling groups that
are actively working on integrating hydrogen chemistry and indirect radiative effects into
their models, and we are aware of a few efforts to conduct further experiments and
simulations. Therefore, we have removed any text referring to models’ current limitations,
because the science is moving fast and we do not want to misrepresent others’ work. For
example, in the few months since we submitted our paper, a new study (Warwick et al.
2022) was published that used sophisticated modeling with a different model than Paulot
et al. to advance scientific understanding even further.

Other comments sorted by line number:

L70: “.. approach as there are currently no formal models we are aware of that

can simulate the full climate responses to hydrogen emissions”. What would it

take to meet the criteria of this sentence and make one apply something else

than this simple methodology?

We have been working with scientists to answer this exact question. It seems like,
depending on the desired objective, what is needed are: historical and projected
emissions; more robust measurements of hydrogen’s atmospheric concentrations; more
data on the soil sink; and interactive emissions, chemistry, concentrations, and radiation.
However, as described in the previous comment, we have removed language on



limitations of existing models given the fast pace of this field. Instead, we further justify
our “simple” method in the introduction section (Line 149): “While more sophisticated
modelling will be needed to fully incorporate all complexities, interactions, and
uncertainties described above, a first-order analysis is possible using already published
data with minor improvements to the standard GWP metric to assess impacts over time
and account for constant emissions.”

L98: “..but the majority presenting results in terms of GWP-100”. Many of these

also state radiative forcing from different sources in addition to GWP100.

We did point out the studies that calculate radiative forcing, but still maintain that the
majority of existing studies present their results in GWP-100. Original Line 96: “The others
have focused on tropospheric effects, with a few calculating climate forcings for select
leakage rates and hydrogen demand scenarios (Prather, 2003; Schultz et al., 2003;
Wuebbles et al., 2010), but the majority presenting results in terms of GWP-100 (Derwent
et al., 2001, 2006; Derwent, 2018; Derwent et al., 2020; Field and Derwent, 2021).”

In response to this comment, we have rephrased this sentence. The text now reads (Line
130): “The implications of this challenge for hydrogen are that the majority of studies to
date have assessed its climate effects either using technical indicators (such as radiative
forcing) or relied on GWP-100 which did not convey hydrogen’s near-term impacts
(Derwent et al., 2001, 2006, 2020; Prather, 2003; Schultz et al., 2003; Wuebbles et al.,
2010; Derwent, 2018; Field and Derwent, 2021, Paulot et al., 2021). Further, until
recently, the only published estimates of hydrogen’s warming effects were focused on
tropospheric responses. These two factors have had the result of undervaluing hydrogen’s
warming potency and overlooking its near-term effects.”

L101: “.. the combination of GWP-100 downplaying hydrogen’s true potency and

the recent insights into the full atmospheric”. I am not sure that downplaying is

clear in this case, the long-term effect of excess carbon in the climate system

should not be downplayed either? Also, which recent insights are we talking

about here?

Yes, we see how this can be confusing. We were trying to make the point that while
previous studies have concluded that H2 leakage is not a major concern for the climate,
they were based on long-term impacts of hydrogen’s tropospheric impacts only. CO2’s
effects should not be “downplayed” either, which is why we always present our results for
multiple timeframes in both the near- and long-term. This text has now been revised to be
more clear, and we do not use the word “downplayed” (Line 130): “The implications of
this challenge for hydrogen are that the majority of studies to date have assessed its
climate effects either using technical indicators (such as radiative forcing) or relied on
GWP-100 which did not convey hydrogen’s near-term impacts (Derwent et al., 2001,
2006, 2020; Prather, 2003; Schultz et al., 2003; Wuebbles et al., 2010; Derwent, 2018;
Field and Derwent, 2021, Paulot et al., 2021). Further, until recently, the only published
estimates of hydrogen’s warming effects were focused on tropospheric responses. These
two factors have had the result of undervaluing hydrogen’s warming potency and
overlooking its near-term effects. For example, new estimates of hydrogen’s GWP that
include stratospheric effects show that hydrogen’s GWP-100 is twice as high as the
previous central estimate of GWP-100 = 5 ± 1 (Derwent et al., 2020; Warwick et al.,
2022). In terms of its near-term potency, the first estimates of hydrogen’s GWP for a
20-year time horizon (GWP-20) yields a potency that is three times higher than its
100-year impact (GWP-20 = 33 [20 – 40]; Warwick et al., 2022). In other words,
hydrogen’s potency can be six times higher than commonly thought when looking at the
critical next couple of decades.”

L117: Here you should add that the lifetime of methane is much longer than



hydrogen, and this will have an effect when integrating their effects.

Based on new research (Warwick et al. 2022), the best available science indicates that
some of hydrogen’s effects can last as long as methane’s (because half of them are due to
its effects on methane). Therefore, we have added (Line 71): “However, like methane,
hydrogen’s warming effects are potent but short-lived. Most of hydrogen’s effects are
shorter-lived than methane’s – occurring within a decade after emission – but its impacts
on methane can affect the climate for roughly an additional decade (Warwick et al.,
2022).”

Line135: “. However, even a 20-year time horizon is long for a gas that only lasts

a few years in the atmosphere”. Hydrogen has no direct climate effects; hence its

own lifetime is not the only time value important to this type of consideration.

One primary effect of hydrogen is the lengthening of the lifetime of methane.

Methane’s lifetime is much longer than that of hydrogen, hence this sentence is

somewhat ambiguous.

Yes, great point, and with our revised analysis incorporating the new derivations of
H2-specific GWP equations, this sentence has been removed as we have found that
GWP-20 is sufficient for conveying H2’s effects.

Line 146: “When continuous emissions are considered as opposed to just one

pulse at time = 0, the potency of hydrogen relative to carbon dioxide is on

average double that of the pulse approach (Fig. 2); this is true for long-term

effects as well” Are you comparing the appropriate things to each other here?

Yes, we were comparing cumulative radiative forcing from a constant equal emissions rate
of *both* hydrogen and carbon dioxide. We have clarified this in the text (Line 351): 
“When continuous equal emissions of both hydrogen and carbon dioxide are considered as
opposed to just one pulse at time = 0, the potency of hydrogen relative to carbon dioxide
can be 50% higher than that of the pulse approach.”

Table 1: I assume there is a typo here, and the carbon dioxide avoided from H2

consumed should be 11 as in the other columns.

Yes, this should have been 11. However, we have modified this table to be simpler and it
no longer includes avoided CO2 emissions.

L255: “To determine emissions of methane when considering blue hydrogen

production, we assume 3 times the mass of hydrogen is needed in the form of

methane for using methane as a feedstock for hydrogen production (Budsberg et

al., 2015).” One study - is there any uncertainties here?

The amount of CH4 needed will depend on the composition of the natural gas, the
efficiency of the reformer, and how much is needed as feedstock and fuel combined.
Unfortunately, it is difficult to find published values, and based on public documents and
private communications we’ve found it can range anywhere from 2.5 to 4.5 times the
mass of hydrogen. Therefore, we use a central estimate of 3 times the mass of hydrogen
because it is in the middle for the published values, but it is on the lower end of all
estimates we’ve come across. This makes methane emissions assumptions from blue
hydrogen applications potentially on the conservative end.  

We’ve expanded discussion of this in the text to clarify (Line 268): “For blue hydrogen
production, methane is needed as both a feedstock and a heat source, and can be emitted
along the supply chain (upstream and midstream) before it is used for producing
hydrogen. The amount of methane needed to produce a unit mass of hydrogen will



depend on the composition of the natural gas, the efficiency of the reformer, and how
much is needed as feedstock and fuel combined. The amount needed is not well
documented in the published literature, and based on public documents and private
communications can range anywhere from 2.5 to 4.5 times the mass of hydrogen
(Budsberg et al., 2015; Kearney Energy Transition Institute, 2020). In this analysis, we
use a central estimate of 3 times the mass of hydrogen is needed in the form of methane.
This value is on the lower end of all estimates but in the middle for published values; this
makes methane emissions assumptions from blue hydrogen applications potentially
conservative.   ”

L279: “To estimate how much carbon dioxide emissions are avoided from

deployment of one unit of hydrogen (which will ultimately depend on the specific

technology), we use estimates from the Hydrogen Council (2017) that quantify

avoided carbon dioxide emissions from a scenario of replacing 18% of final fossil

fuel-derived energy demand in 2050 with hydrogen applications.” Hydrogen has

a lot of indirect effects, as the authors also state, but so has CO2. How is that

reflected in the numbers for emitted CO2 (11 kg CO2 avoided per 1 kg H2

consumed)? I think the decay functions need to be explained better. Also, how

did the authors include the decay of methane into their GWP20 for hydrogen?

The Methods needs to be better explained.

First, CO2’s radiative efficiency uncertainty is also now reflected in the error bars in new
Fig. 4. Second, based on this comment and others, we have decided to include a
sensitivity assessment to explore how different levels of avoided CO2 emissions per 1 kg
H2 consumed would influence our results. Below is the new Fig. 5 and the text referring to
the results.

Figure 5: Relative warming impact over time from replacing fossil fuel
technologies with green or blue hydrogen alternatives for different levels of
avoided carbon dioxide and methane emissions. Ratio of cumulative radiative forcing
of a constant emissions rate from deploying 1 kg of H2 continuously is used as a proxy of
relative warming impacts. Emissions from hydrogen alternatives are hydrogen for green
hydrogen and hydrogen and methane from blue hydrogen. Emissions from fossil fuel
technologies are carbon dioxide (solid bars) and carbon dioxide and methane (lined bars).
Emissions of hydrogen and methane include a range of plausible leak rates from 1% (best-
case) to 10% (worst-case) per unit H2 deployed for hydrogen and from 1% (best-case) to
3% (worst-case) for methane. The height of each bar corresponds to the range from
leakage. See Table 2 for emissions inputs for hydrogen and methane from hydrogen
applications, Table 4 for emissions of methane from fossil fuel technologies, and Table 1
and Eqns (1) – (8) for equations used in the calculation and input parameters.



Line 437: “In the above, we considered a generic case for avoiding carbon dioxide
emissions from fossil fuel technologies. However, the perceived climate benefits of
hydrogen alternatives will depend on the amount of CO2 avoided, which will vary
depending on the technology that is replaced. Therefore, to test the sensitivity of our
results to the amount of CO2 avoided, we consider avoided emissions of 5, 10, and 15 kg
per 1 kg of hydrogen deployed (compared to our central estimate of 11 kg) and compare
the relative climate impacts of the hydrogen applications over a 20-year time horizon
(solid bars in Fig. 5). We find that if avoided emissions of CO2 are on the lower end, blue
hydrogen could yield more than a 150% increase in warming over the first 20 years if leak
rates are at the upper end, and green hydrogen may only reduce warming by 20%.
However, if avoided emissions of CO2 are on the higher end, both worst-case blue and
green hydrogen would yield climate benefits, reducing warming by 10 and 75%,
respectively.”

Third, we have rewritten our methods section to be clearer, and provided all equations
used (which includes AGWP equations for methane and CO2, as well as their decay
functions; the new H2 AGWP equations which accounts for methane’s lifetime; and input
parameters used in all). 

L318: “.. based on their decay functions and radiative efficiencies”. Are these

decay functions generally well-known for a gas such as H2 that has various

indirect effects on climate?

No, and this was certainly a limitation of our original analysis – how to handle hydrogen’s
multiple indirect effects with different timescales. This had not been sufficiently
researched in the literature. However, as stated previously, new research has been
published that comprehensively considers this, and therefore we use the new H2-specific
AGWP derivations in our study which account for varying timelines of effects.

L329: “Methane and carbon dioxide radiative properties and atmospheric

lifetimes are taken from Forster et al. (2021), but we do not include climate-

carbon feedbacks associated with methane to be consistent with what is

included with hydrogen.” In principle one could argue that this too should be

compared to the results in the Paulot model to retain consistency.

We have changed our analysis to include climate-carbon feedbacks associated with
methane.

L351: “The CMIP6 models suggest a best estimate of 3.78 ± 1.08 °C for the ECS

and a . 3.93 W m-2 effective radiative forcing for a doubling of CO2 (Forster et

al., 2021). This suggests a climate efficacy of 0.96 °C (W m2 ) -1.” Would it be

more concise to compare to the ECS of the GFDL model, and not to the CMIP6

ensemble at large?

We’re not sure, because Paulot et al. also used the CMIP6 average as opposed to the ECS
that matched their model.

L376: “The benefit of the Technology Warming Potential method is that we can

analyse climate impacts over multiple time periods of interest—in the near-,

medium-, and long-term—insights that are not available with the use of the

GWP-100 metric. This is important when short-lived climate pollutants are

emitted as they are often reported and assessed based on the long-term impact

of a pulse emission, which overlooks their true impacts during the time they are

active in the atmosphere.” As stated above; I am missing a thoroughly

discussion of GWP and other possible metrics such as GWP* or cGTP which are

more widely discussed in the literature. There is hardly any discussion about the



uncertainties using their own metric, especially about how they compare the

short lifetime of hydrogen and the long lifetime of CO2, which is a problem about

this manuscript. 

Again, we apologize for the misunderstandings about our methods. “Our” metric is just
GWP with a constant emissions rate and as a function of time horizon. It has the same
uncertainties as GWP, and we have now included all of the relevant equations and inputs.
We hope that our new methods section and removal of most of the metrics discussion
helps clarify our study and refocuses the work on the insights of the analysis and not the
issues with metrics. We use GWP because of its accessibility, but improve it slightly. With
our major revisions of the paper, we do not see the need to go into more detail on other
possible metrics.

 

Please also note the supplement to this comment: 
https://acp.copernicus.org/preprints/acp-2022-91/acp-2022-91-AC1-supplement.pdf
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