Comment on acp-2021-764
Anonymous Referee #1

Referee comment on "Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: analysis of a typical photochemical episode by an observation-based model" by Taotao Liu et al., Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-764-RC2, 2022

AOC is key to photochemical reactions and the formation of secondary components like O3 and secondary organic aerosol. This study uses OBM to understand the AOC in a coastal city in China during a typical photochemical episode. It is well organized and suitable for publication in ACP. I have below comments for the authors.

- OBM is good for understanding the local photochemical formation of O3, but it is not good to evaluate the transport, while back trajectories cannot quantify the contributions. Thus, it is important to show the method of how the regional transport contribution is determined. In this study, the differences between observed O3 changes and local formation were treated as regional transport, which is very misleading. A better method representation should be physical processes instead of regional transport.
- CO looks very important in OH reactivity, a quick search showed me that it is quite different from other countries, please add comparison or discussion why it is high in this study. (CalNex-LA, BEACHON-SRM08, DISCOVER-AQ)
- The episode is just one high O3 event, thus, not necessarily the whole story of O3-NOx-VOCs relationship. It should be cautious when making policy implications.
- From Figure 11, the Rtran is mostly opposite to the Rchem, which means local formation and so-called regional transport do not work together to cause high ozone events. The conclusion that “regional transport aggravated the pollution of ozone” is not accurate.
- Some expresses are not in scientific mode, for example, 1) In Abstract, “were the important primary sources of ROX”, O3 and HCHO are not emission sources, so not proper to use primary. 2) how the uncertainties are calculated? OH contributed to 91±23%, at what cases, you have a larger than 100% contribution?