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Linhui Jiang et al.

Author comment on "Hyperfine-resolution mapping of on-road vehicle emissions with
comprehensive traffic monitoring and an intelligent transportation system" by Linhui Jiang
et al., Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-533-AC2, 2021

This paper established a high spatial resolution bottom-up on-road vehicle emission
inventory using measured traffic fluxes, vehicle-specific categories, and speeds over the
Xiaoshan District in the Yangtze River Delta (YRD) region. The effectiveness of traffic
control strategies was investigated based on the hyperfine on-road vehicle emission
dataset.

The importance of controlling the mobile sources on the synergy effect of PM2.5 and O3
abatement draws more and more attentions in recent years. However, the uncertainties in
current mobile source emission inventory propagates large biases to the model simulation
results and final control measures development. As a modeler, I am excited to see that
using on-site measurement and big data technology is able to establish such fine
resolution mobile source emission inventory. It can also improve the accuracy of model
simulations significantly.

This paper is good in general and within the scope of Atmospheric Chemistry and Physics.
I recommend for publication once the comments expressed below are addressed.

Response: We truly appreciate the interest and support of the reviewer. We are
also grateful for all the constructive comments and suggestions. We have
adopted most of the suggestions in our revised manuscript. 

The followings are our point-to-point responses to the reviewers’ comments.  

General comments:

The author needs to add some discussions regarding how to put this hyperfine on-road
vehicle emission into the air quality models. Is it feasible and cost effective to build a
nation-wide hyperfine on-road vehicle emission using the same method established in
this study?

Response: We thank the reviewer for the suggestion. We have supplemented
associated discussions to clarify how to put the resulting hyperfine emission
inventory into the CTMs. Specifically, our results can replace the coarse-grid (> 1
× 1 ~ 25 × 25 km2) emission inventory (Janssens-Maenhout et al., 2015; Li et
al., 2017; Zhang et al., 2013) as the input of the CTM. Comparably, the



meteorological input should also be hyperfine sufficiently, which thus needs to
account for large eddy simulations (e.g., WRF-LES). In so doing, dispersion
models (e.g., AERMOD)  (Yang et al., 2019), instead of full CTMs (Mehmood et
al., 2020; Wong et al., 2012; Yu et al., 2013), are sufficient to resolve street-
level gradients of air pollution concentrations. Through combination with CTM
outputs and near-road air quality measurements (Apte et al., 2017; Grange et
al., 2017; Jiang et al., 2018; Yang et al., 2018), the hyperfine-resolution
scanning of responses of air quality to emissions becomes possible. This would
help understand highly nonlinear air pollution mechanisms, such as the
O3-VOCs-NOx relationships (Li et al., 2019), and thus optimize mitigation
policies. Besides, the resulting hyperfine-resolution map of air pollutant
concentrations can help address exposure misclassification and even directly
alter personal behaviour, such that real-time traffic navigation data now inform
individual driving patterns. In addition, these hyperfine-resolution emissions and
air quality maps might result in broader societal consequences, including urban
land-use decisions, ecological planning, and political economy.

Besides, we would note that this type of hyperfine on-road vehicle emission
inventories can be established in our way nationwide. However, it should be
conducted strategically due to high costs. We have supplemented detailed
discussions on this issue. 

This work proposes a straightforward emission model framework that can
provide several orders of magnitude more spatial information. As shown in our
results, this approach could be extended to nationwide megacities if
comprehensive traffic conditions are fully measured and interconnected via the
ITS. However, its costs are significantly higher than those of previous attempts.
To this end, more flexible data collection from low-cost sensors, such as those on
cell phones, taxis, and public transit, could substantially lower the costs of
monitoring instruments. Furthermore, advances in open-source traffic platforms
that can complete those big data interconnections would further decrease the
costs. In addition, as demonstrated in Sect. 3.7, our approach, coupled with data
reduction algorithms, might also enable high-resolution emission mappings. This
indicates an application potential of our approach for middle-sized and small
cities where robust traffic monitoring infrastructures are absent. 

Added/rewritten part in Conclusions: By pinpointing localized emission hotspots,
these data may provide new opportunities for policymakers. Specifically, our results can
replace the coarse-grid (> 1 × 1  ~ 25 × 25 km2) emission inventory (Janssens-Maenhout
et al., 2015; Li et al., 2017; Zhang et al., 2013) as the input of the CTM. Comparably, the
meteorological input should also be hyperfine sufficiently, which thus needs to account for
large eddy simulations (e.g., WRF-LES) (Zhong et al., 2020). In so doing, dispersion
models (e.g., AERMOD)  (Yang et al., 2019), instead of full CTMs (Mehmood et al., 2020;
Wong et al., 2012; Yu et al., 2013), are sufficient to resolve street-level gradients of air
pollution concentrations. Through combination with CTM outputs and near-road air quality
measurements (Apte et al., 2017; Grange et al., 2017; Jiang et al., 2018; Yang et al.,
2018), the hyperfine-resolution scanning of responses of air quality to emissions becomes
possible. This would help understand highly nonlinear air pollution mechanisms, such as
the O3-VOCs-NOx relationships (Li et al., 2019), and thus optimize mitigation policies.
Besides, the resulting hyperfine-resolution maps of air pollutant concentrations can help
address exposure misclassifications and even directly alter personal behaviours, such that
real-time traffic navigation data can now inform individual driving patterns. In addition,
these hyperfine-resolution emission and air quality maps might result in broader societal
consequences, including urban land-use decisions, ecological planning, and political
economy.



Added/rewritten part in Conclusions: This work proposes a straightforward emission
model framework that can provide several orders of magnitude more spatial information.
As shown in our results, this approach could be extended to nationwide megacities if
comprehensive traffic conditions are fully measured and interconnected via the ITS.
However, its costs are significantly higher than those of previous attempts. To this end,
more flexible data collection from low-cost sensors, such as those on cell phones, taxis,
and public transit, could substantially lower the costs of monitoring instruments.
Furthermore, advances in open-source traffic platforms that can complete those big data
interconnections would further decrease the costs. In addition, as demonstrated in Sect.
3.7, our approach, coupled with data reduction algorithms, might also enable high-
resolution emission mappings. This indicates an application potential of our approach for
middle-sized and small cities where robust traffic monitoring infrastructures are absent.

 

The author needs to add some discussions on the uncertainties of the hyperfine on-road
vehicle emission established in this study. It seems that the vehicle emission activities
can be greatly improved, what about emission factors. The method used in this study
divides vehicles into 6 categories. Does it include and separate gasoline and diesel
vehicles, and does it take vehicle age into account?

Response: We thank the reviewer for the suggestion. We have supplemented
associated discussions for the uncertainties in our results. In particular, the
uncertainties in emission factors have been involved. Also, the fuel- and age-
associated uncertainties are discussed briefly.

As pointed by the reviewer, in our model framework, the traffic fluxes are
measured accurately. By comparison, the emission factors are of larger
uncertainties. This is because although they are obtained from the local official
vehicle Inspect/Maintenance (I/M) datasets, some assumptions are
inappropriate. For instance, the emission factors are measured in lab
circumstances, possibly unsuitable for real-world conditions (Seo et al., 2021).
Besides, they are calculated as a function of the vehicle categories and speeds
(Fig. S1), without consideration of fuel-dependent discrepancies. Instead, we
assumed that, in this study, HDVs and HDTs are diesel-driven, while other
vehicle categories are fueled by gasoline. Also, the effects of vehicle ages were
ignored. Such assumptions are consistent with previous studies (Yang et al.,
2019; Zhou et al., 2017). Future introductions of constraints via near-road
emission measurements would decrease such uncertainties. 

Added/rewritten part in Conclusions: In our model framework, the traffic fluxes are
measured accurately. By comparison, the emission factors are of larger uncertainties. This
is because although they are obtained from the local official vehicle Inspect/Maintenance
(I/M) datasets, some assumptions are inappropriate. For instance, the emission factors
are measured in lab circumstances, possibly unsuitable for real-world conditions (Seo et
al., 2021). Besides, they are calculated as a function of the vehicle categories and speeds
(Fig. S1), without consideration of fuel-dependent discrepancies. Instead, we assumed
that, in this study, HDVs and HDTs are diesel-driven, while other vehicle categories are
fueled by gasoline. Also, the effects of vehicle ages were ignored. Such assumptions are
consistent with previous studies (Yang et al., 2019; Zhou et al., 2017). Future
introductions of constraints via near-road emission measurements would decrease such
uncertainties.

 

Specific comments:



In section 3.6, the author compared the newly established on-road vehicle emission
inventory with those from MEIC and HTAP inventories at regional scale. Is it possible to
add some comparisons with localized refined emission inventory, as well as with the
measured vehicle emission factors in the literature?

Response: We thank the reviewer for the suggestion. We have supplemented
associated discussions for this issue. In this study, the emission factors were
measured. We obtained them from the local official vehicle Inspect/Maintenance
(I/M) datasets, the methodology of which was described in China’s National
Emission Inventory Guidebook (ICCT, 2020). On the other hand, the localized
emission inventory over the Xiaoshan District is still lacking. MEICv1.3 for 2016
and HTAPv2.2 for 2010, as state-of-the-art conventional emission inventories
provide a valuable opportunity to evaluate our results (Fig. S13) (Janssens-
Maenhout et al., 2015; Li et al., 2017). 

Added/rewritten part in Comparison with other inventories: The localized emission
inventory over the Xiaoshan District is still lacking. MEICv1.3 for 2016 and HTAPv2.2 for
2010, as state-of-the-art conventional emission inventories provide a valuable opportunity
to evaluate our results (Fig. S13) (Janssens-Maenhout et al., 2015; Li et al., 2017).

 

The caption in Figure 1 needs to be simplified, no necessary to explain the method
again.

Response: We thank the reviewer for the suggestion. We have simplified the
caption accordingly.

Added/rewritten part in Figure 1: Figure 1. A hyperfine-resolution model
framework for on-road vehicle emissions. Traffic monitoring includes radar
velocimeters and surveillance cameras. License plates, speeds, categories, and traffic
fluxes are collected. The speed-/category-dependent emission factors are obtained from
the local official vehicle I/M datasets. Road segments are divided into three road classes:
highways, arterial roads, and residential streets. An intelligent transportation system (ITS)
(named “City Brain”) is developed to interconnect these input data. An image recognition
algorithm is embedded to recognize the category for a certain vehicle. The detail
information is illustrated in Sect. 2.2.

 

In the line 211, the author takes ICC values of 0.75 ~ 1 as the reflection of large and
systematic spatial differences. What is the basis for this range? More explanation is
needed.

Response: We thank the reviewer for the suggestion. We have supplemented
associated interpretations and references for the application of the ICC. ICC is a
common evaluation parameters in intra- and inter-rater reliability
analyses (Bartko, 1966; Koo and Li, 2016; Shrout and Fleiss, 1979). By
definition, a low ICC can relate to the lack of variability among sampled subjects,
while a high value indicates that substantially more variabilities occur among
groups than does within each group. For a hypothetical dataset where all
repeated measurements at each location were precisely equal to each other, the
ICC would converge to 1.0. In contrast, for a dataset where the concentration
variabilities among repeated measures at each individual location are very high
relative to the spatial differences in concentrations among roads, the ICC would
approach 0. Previous studies suggest that ICC values less than 0.5 are indicative



of poor reliability, values between 0.5 and 0.75 indicate moderate reliability,
values larger than 0.75 indicate good reliability (Bartko, 1966; Koo and Li, 2016;
Shrout and Fleiss, 1979). For this application, ICC values of 0.75 ~ 1 reflected
large and systematic spatial differences, with a low residual temporal variability
at each location. 

Added/rewritten part in Monte Carlo subsampling: ICC is a common evaluation
parameters in intra- and inter-rater reliability analyses (Bartko, 1966; Koo and Li, 2016;
Shrout and Fleiss, 1979). By definition, a low ICC can relate to the lack of variabilities
among sampled subjects, while a high value indicates that substantially more variabilities
occur among groups than does within each group. For a hypothetical dataset where all
repeated measurements at each location were precisely equal to each other, the ICC
would converge to 1.0. In contrast, for a dataset where the concentration variabilities
among repeated measures at each individual location are very high relative to the spatial
differences in concentration among roads, the ICC would approach 0. Previous studies
suggest that ICC values less than 0.5 are indicative of poor reliability, values between 0.5
and 0.75 indicate moderate reliability, values larger than 0.75 indicate good reliability
(Bartko, 1966; Koo and Li, 2016; Shrout and Fleiss, 1979). For this application, ICC
values of 0.75 ~ 1 reflected large and systematic spatial differences, with a low residual
temporal variability at each location.

 

More quantitative findings from this study need to add into conclusion part in section 4.

Response: We thank the reviewer for the suggestion. We have revised this
paragraph to make it more quantitative and illustrative. 

Added/rewritten part in Conclusions: This work establishes a hyperfine bottom-up
approach to reveal a unique on-road vehicle emission pattern at 1 ~ 3 orders of
magnitude higher spatial resolution than current emission inventories. In particular, all-
around traffic monitoring (including traffic fluxes, vehicle-specific categories, and speeds)
is interconnected via an intelligent transportation system (ITS) over the Xiaoshan District
in the Yangtze River Delta (YRD) region. This enables us to calculate single-vehicle-
specific emissions over each fine-scale (10m ~ 1km) road segment. Consequently, the
most hyperfine emission dataset of its type is achieved, exposing widespread and
persistent emission hotspots. More importantly, this map is of significantly sharp small-
scale variabilities, up to 8 ~ 15 times within individual hotspots, attributable to distinct
traffic fluxes, road conditions, and vehicle categories. Once all kinds of vehicles comply
with the even-odd rule over the entire district, more than 50% of the emissions are
reduced. By comparison, our results are lower (> 14.8% ~ 67.7%) than those in the
conventional emission inventories (i.e., MEICv1.3 and HTAPv2.2). Through systematic
subsampling of our weekday emission dataset, we find that 15 ~ 30 weekdays are
sufficient to reproduce key spatial patterns with good precision and low bias.
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