Comment on acp-2021-474
Anonymous Referee #2

Referee comment on "A New Inverse Modeling Approach for Emission Sources based on the DDM-3D and 3DVAR techniques: an application to air quality forecasts in the Beijing-Tianjin-Hebei Region" by Xinghong Cheng et al., Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-474-RC2, 2021

Comments to “A New Inverse Modeling Approach for Emission Sources based on the DDM-3D and 3DVAR techniques: an application to air quality forecasts in the Beijing-Tianjin-Hebei Region”

General comments:

Timely precise emissions of air pollutants are crucial for air quality prediction and mitigation. The authors present a newly developed emission inversion method based on the combination three-dimensional decoupled direct (DDM-3D) and 3DVAR data assimilation techniques. The emission inversion method is applied to update the SO2 and NOx emissions over the Beijing-Tianjin-Hebei region during a heavy haze period. Their results demonstrate the newly updated emissions are reasonable and helpful to the prediction of the air pollutants including O3. The manuscript is well-organized and scientifically sound. Therefore, I recommend accepting it after minor revision.

Specific comments:

L180 Please describe the random perturbation method more detail.

L203 Matrix D can not represent the impacts of local emissions at one grid on other grids. It should be C.

L270 Please change the Ls here and in formula (5), since you also use Ls in Line 214.

Figure 6 What are the reasons for the large discrepancies of the simulation and sensitivity coefficient over December 29?