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General Comments:

 

This paper is the first to demonstrate the calculation of ice particle mass from
measurements of ice particle maximum dimension, projected area and fall velocity, and in
doing so, it represents a test of hydrodynamic flow theory.  However, as argued below,
the method appears successful for graupel and quasi-spherical ice particles, but less
successful for planar ice crystals (e.g., stellars or dendrites) and definitely not successful
for needles and columnar ice crystals.  Similar findings were reported by Heymsfield and
Westbrook (2010, JAS; henceforth HW2010), where the fall speed treatment of Mitchell
(1996, JAS; henceforth M96) worked well for ice crystals having aspect ratios closer to
unity (e.g., graupel, short columns, thick plates) but not well for stellars and needles
having more extreme aspect ratios.  Therefore, two new approaches are offered for
modifying the methodology described in this study. 

One approach is to define the Reynolds number Re in terms of a characteristic length L*,
rather than maximum dimension Dmax, where ReL* = V L*/ν, where V = terminal fall speed
and ν = kinematic viscosity of air = η/ρa where ρa = air density and η = dynamic viscosity
of air.  This L* was found to describe the vapor mass and heat transfer from a ventilated
ice crystal well and hence captures the flow effect on ice crystal growth.  L* is defined as

            L* = A/P (1)

where A = total surface area of an ice particle and P = ice particle perimeter projected to
the flow.  See Pruppacher and Klett (1997), Microphysics of Clouds and Precipitation,



Kluwer Academic Publishers, p. 552, for more details.

            Fortunately, Jayaweera (1971, JAS) has formulas describing L* for planar and
columnar ice crystals.  For planar ice crystals, L* = (d/2) (1 + 2e) and

 

            ReL* = 0.5(1 + 2e) Red                                                                                     
(2)

 

where subscript d on Reynolds number Re indicates that Re is evaluated using the
diameter d of a circle having the same area as the basal face of the ice crystal.  For
hexagonal plates, d = 0.910 D, where D = maximum dimension of the basal face. 
Moreover, e refers to the ratio of minor to major axis.  Reasonable estimates for e can be
obtained from Dmax and Auer and Veal (1970, JAS).  For columnar ice crystals, L* =
(π/4)d [1 + (1/(1+e))] and

 

            ReL* = (π/4) [1 + (1/(1+e))] Red .                                                                    
(3)

 

Notice here that ReL* depends on the “diameter” or thickness of a column and not its
maximum dimension Dmax (as was used in this ACPD paper).  This indicates V is most
related to d.  By substituting ReDmax used in this ACPD paper with ReL* in Eqn. 5 to
calculate Best number “X”, and substituting Dmax with L* in Eqn. 6 of this paper (while
using this new calculation for X), the m-Dmax power laws found here for columnar and
planar ice crystals may be improved, having greater consistency with the body of
theoretical and empirical knowledge (discussed below under Major Comments).

            The second approach is to calculate the “modified Best number” X* from Eqn. 5 of
this ACPD paper (as described in HW2010) by redefining the constants used to calculate



X*, where C0 = 0.35 and δ0 = 8.0.  However, in this case Re = ReDmax (as originally used
in this paper) since this maintains consistency with HW2010.  Then mass m is calculated
by inverting the HW2010 definition of X*:

 

            m = π η2 X* Ar
1/2/( 8 g ρa ) (4)

 

where m = ice particle mass, g = gravity constant and Ar = area of ice crystal normal to
the flow divided by area of circle having same maximum dimension (referred to as the
area ratio).

However, if the “thick columns” shape category in this study corresponds to short, thick
columns, the M96 fall speed scheme should work fine for this shape category, and this
second approach may not address the problem for this shape.

It is possible that neither of these alternative approaches will render improved results, but
it seems worth a try.  If there is no improvement, the limitations described below will
need to be mentioned in the paper.

 

 

Major Comments:

 

Lines 149-150: Please indicate which relationships in Tables 1 and 2 are based on the
approach described in Sect. 3.3 vs. the approach given in Sect. 3.2.  Since this
approach involves empirical relationships already having considerable uncertainty,



m(D), m(A) and v(m) from this approach may have greater uncertainty than the
previous approach (Sect. 3.2) due to the propagation of uncertainties in the empirical
expressions used here.  This knowledge may be helpful for interpreting the results in
Tables 1 and 2.

 

Lines 185-188 on stellar ice crystals: This same argument is expressed more
quantitatively in Mitchell et al. (1990, Sect. 4a), where hexagonal crystal volume V is
approximated by using a circular basal face so that aspect ratio k = c/a = c/r, where r
= radius of this circle having the same area as the basal face.  Moreover, c and a are
the semi-axes corresponding to the prism and basal faces of an ice crystal.  Thus, V =
π r2 k r = π k r3 for this approximation, and for constant density and constant k, the m-
D relationship has a power of 3.

However, constant k is an invalid assumption for a stellar ice crystal that only forms
between ~ -14 and -16 °C.  As described in Chen and Lamb (1994, JAS), k is rarely
constant (definitely not at these temperatures), and depends on the ratio of condensation
coefficients for the basal and prism crystal faces.  This is referred to as the inherent
growth ratio (IGR), and IGR is related to m-D power laws in Sect.  7 of their paper.  I
strongly recommend that the authors read this paper and then revise this commentary
accordingly.  This information is also in the cloud physics text book by Lamb and Verlinde,
Physics and Chemistry of Clouds (2011, Cambridge Univ. Press).  In addition, Jerry
Harrington's group at Penn. State Univ. has greatly extended this work through several
publications (e.g., Harrington et al., 2013, JAS, "A method for adaptive habit prediction in
bulk microphysical models. Part I: Theoretical development).

Physical intuition also informs us that slope bD is too high since bD is a measure of the
increase in mass with respect to size.   A large (i.e., steep) slope indicates a relatively
large mass increase per unit size increment, but this is not true for stellar or dendrite ice
crystals since their ice density decreases with increasing size.

 

Lines 190-196: These shapes are all columnar, which may be a clue to the problem
here.  Reynolds Number Re is expressed by (2) in terms of Dmax, but due to
hydrodynamical considerations, some argue that Dmax should be replaced by a
"characteristic length" L* defined in Pruppacher and Klett (1997) as: L* = A/P, where A
= total ice particle surface area and P = particle perimeter normal to the flow.  For
needles, changes in A and P will be roughly proportional, with L* changing much less
than Dmax.



As shown by Jayaweera (1971, JAS), L* is strongly related to the column radius (or basal
face semi-axis) and weakly related to Dmax, indicating the formulation of Eqns. (2) and (5)
in terms of Dmax are flawed based on ReL*.  This is indeed the case for hexagonal columns.

 

Lines 196-199: Note that bD < 1.0 also for thick columns (C1e; group 3), with bD =
0.81.  Compare this with Tables 1 & 3 in Mitchell et al. (1990, JAM)), where C1e bD =6
is found to be consistent with other studies based on dimensional-density
relationships.  Moreover, bD = 2.6 is very consistent with the theoretical prediction of
Chen and Lamb for C1e bD (see their Fig. 12). This is strong evidence that the C1e bD in
this current study suffers from some limitation.  Please expose this issue for the
readers.

 

Section 4.4.1 on plates: Chen and Lamb (1992) provide theoretical limits for columnar
and planar ice crystals regarding bD, where bD for hexagonal plates lies between 2.0
and 3.0.  In this current study for plates, bD = 1.72, indicating its value should be
treated with caution; please make readers aware of this.  Since side planes grow
diffusionally through a different mechanism (Furakawa, 1982, J. Meteor. Soc. Japan), it
is not clear whether these limits apply to side planes.  Please mention this.

 

 

Figure 3 caption, last sentence: The text indicates that this should be valid for all ice
particles and not just spheres; please make this clear.

 

Lines 290-291: Can it be said that Re-X represents the fall speed upper limit?



 

Summary and conclusions; 1st bullet: Will the fact that m is derived from v produce a
co-variance that contributes to the stronger correlation between v and m?  If so, please
mention this wherever it is most appropriate.

 

Summary and conclusions; 2nd bullet: Will not the power-law approximations have
greater uncertainty than the relationships based on Eq. 5?  Please address this concern
wherever it is most appropriate.

 

Summary and conclusions; last sentence of 3rd bullet: But we know this is not true
based on Chen and Lamb (1994, JAS) and other m-D measurements for stellar
crystals.  Please remove this last sentence.

 

Line 328-330: I don't see this relationship plotted (spherical ice having a density of
0.12 g cm-3).  If it is not shown, then please add in parentheses, "not shown".

 

 

 

Minor Comments:



 

Line 150: Apparent typo; Sect. 3.1 => 3.2?

 

Lines 248-9: It appears that Ma has not been defined.

 

Line 329: The second comma is not needed.

 

 

Best wishes for a successful study,

David Mitchell

 

Please also note the supplement to this comment: 
https://acp.copernicus.org/preprints/acp-2021-203/acp-2021-203-RC1-supplement.pdf
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