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Abstract. The 2016 Kumamoto earthquake sequence was triggered by an Mw 6.2 event at 21:26 on April 14. Approximately 

28 hours later, at 1:25 on April 16, an Mw 7.0 event (the mainshock) followed. The epicenters of both events were located 

near the residential area of Mashiki town and the region nearby. Due to very strong seismic ground motion, the earthquake 10 

produced extensive damage to buildings and infrastructure. In this paper, collapsed buildings were detected using a pair of 

digital surface models (DSMs), taken before and after the April 16 mainshock by airborne light detection and ranging (Lidar) 

flights. Different methods for extracting the collapsed buildings from the data were evaluated, and the change of average 

elevations within a building footprint was found to be the most important feature. Finally, the distribution of collapsed 

buildings in the study area was presented, and the result was consistent with that of a building damage survey performed 15 

after the earthquake. 

1 Introduction 

The detection of affected areas after an earthquake is very important for disaster response activities. Allocating resources, 

such as relief forces, food, medicine and shelter, is crucial after a natural disaster strikes (Das and Hanaoka, 2014). Thus, 

proper information on the damage situation will improve the efficiency in distributing relief resources. The extent of the 20 

affected area also provides an idea of the scale of the disaster and an estimate of the relief demand. Damage assessment after 

an earthquake disaster is important for the scientific community as well. A significant amount of information has been 

obtained from previous earthquakes and used to improve construction design codes to evaluate and mitigate damage to 

buildings and infrastructure in the event of future earthquakes. For instance, Whitman et al. (1973) provided earthquake 

damage probability matrices using data collected after the 1971 San Fernando, California earthquake. Yamazaki and Murao 25 

(2000) proposed vulnerability functions for Japanese buildings based on building inventory and damage data and the spatial 

distribution of strong motion (Yamaguchi and Yamazaki, 2001) during the 1995 Kobe, Japan, earthquake. 

Information gathered from field surveys is invaluable and very precise; however, the process requires significant time and 

effort, and access to affected areas is often hindered by road closures and secondary hazards. Remote sensing is an effective 
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tool for detecting damaged areas because it can be used to document damage to large areas without direct access to the 

affected area (Yamazaki and Matsuoka, 2007; Rathje and Adams, 2008; Dell'Acqua and Gamba, 2012). Immense 

improvement to the accessibility of remote sensing imagery data and geospatial data processing tools has been achieved over 

the last several years (Vuolo et al., 2016; Korosov et al., 2016). A dramatic increase in the number of satellite, aircraft, and 

unmanned aerial vehicle (UAV) sensors has been observed as well. One of the most successful approaches for assessing 5 

damaged areas is based on change detection between a pair of images taken before and after an earthquake (Meslem et al., 

2011; Liu et al. 2013; Uprety et al., 2013). In addition, remote sensing has been used for long term urban recovery 

monitoring (Hoshi et al., 2014; Hashemi-Parast et al., 2016).  

Applications of airborne light detection and ranging (Lidar) for damage detection are still few compared with other remote 

sensing technologies. The main reason is the lack of Lidar data from before a disaster. However, Aixia et al. (2016) 10 

performed a study on the possibility of detecting building damage using only a post-earthquake Lidar digital surface model 

(DSM). Their results are promising for buildings with simple roof shapes, such as flat and pitched roofs. Labiak et al. (2011) 

proposed an automated method to detect and quantify building damage using only a post-earthquake Lidar DSM as well, but 

their results had low accuracy for heavily damaged and collapsed buildings. Hussain et al. (2011) combined Lidar data with 

GeoEye-1 imagery to detect damaged buildings after the 2010 Haiti earthquake. They detected 190 damaged buildings out of 15 

200; however, their procedure required manual intervention, and the damage level was not clearly classified. Instead of Lidar 

data, Maruyama et al. (2014) constructed a digital surface model (DSM) from aerial images and used it to detect collapsed 

buildings after the 2007 Niigata-Chuetsu-Oki, Japan, earthquake. 

An Mw 6.2 earthquake struck Kumamoto Prefecture, Japan, on April 14, 2016 at 21:26 JST. The event produced structural 

damage and resulted in nine human casualties (Cabinet Office of Japan, 2016). Then, 28 hours later, a second earthquake 20 

with Mw 7.0 occurred close to the first one. Thus, the first event was designated the “foreshock” and the second the 

“mainshock”. The epicenter of the foreshock was located at the end of the Hinagu fault, and the epicenter of the mainshock 

was located in the Futugawa fault. Both events were located in Mashiki town with a population of 33 thousand. The number 

of aftershocks following these events reached the largest number among recent inland earthquakes in Japan (Japan 

Meteorological Agency, 2017). The total number of deaths due to direct causes reached fifty, and over eight-thousand 25 

residential buildings were severely damaged or collapsed due to the Kumamoto earthquake sequence.   

Among the several remote sensing technologies used to monitor the area affected by the Kumamoto earthquake 

(Yamazaki and Liu, 2016), a pair of Lidar datasets taken before and after the mainshock were available (Moya et al., 2017). 

As mentioned before, this kind of dataset is not often available. Therefore, this study explores the potential use of Lidar data 

to extract damaged buildings over a wide area. Different parameters were tested to obtain information regarding the damage 30 

state of buildings in the area.  
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2 Study area and dataset 

After the foreshock, a Lidar surveying flight was carried out during 15:00 – 17:00 (JST) on April 15, 2016, in order to record 

the effects of the earthquake (Asia Air Survey Co., Ltd., 2016). It produced point clouds with an average point density of 

1.5-2 points/m
2
. Subsequently, because the unexpected mainshock occurred, a second mission was set up during 10:00 – 5 

12:00 (JST) on April 23, 2016, which produced point clouds with an average point density of 3-4 points/m
2
. Both sets of 

Lidar data were acquired using a Leica ALS50II instrument and the same pilot and airplane. After rasterization of the raw 

point clouds, two digital surface models (DSMs) with a data spacing of 50 cm were created. The DSM collected before and 

after the mainshock will hereafter be referred to as the BDSM and ADSM, respectively. Figure 1 shows the extent of the 

ADSM, which represents the entire study area. It covers the main part of Mashiki town and some parts of Nishihara village, 10 

Mifune and Kashima towns, and Kumamoto city.  

The study area is located in the near field of the Kumamoto earthquake sequence where significant permanent ground 

displacements were produced during the earthquake. A direct comparison of the BDSM and ADSM shows that the building 

coordinates do not match because the ADSM contains coseismic displacements. Therefore, the ADSM was shifted before 

detecting the damaged buildings based on the permanent crustal movement calculated by Moya et al. (2017). To do this, an 15 

automated procedure for calculating the permanent three-dimensional (3D) displacement was implemented. The permanent 

ground displacement was calculated by 100m-grid size, which is applied to the ADSM pixels within the grid-size. Figure 2 

illustrates the calculated permanent ground displacement of the common Lidar data area. In the figure, the results of new 

field measurement carried out in August 2016 for surveying reference points after the Kumamoto earthquake are also shown 

(Geospatial Information Authority of Japan, 2017). The coseismic displacements estimated from the Lidar data show good 20 

agreement with the survey results (Figure 3). In Figure 2, the causative fault is located in the areas where sudden changes in 

the direction of the permanent ground displacement are observed. Over the entire study area, a maximum horizontal 

displacement of approximately 2 m was observed.  

3 Detection of damaged buildings 

To focus on buildings, a geocoded building footprint dataset, provided by the Geospatial Information Authority of Japan 25 

(GSI), was used. Only buildings with footprint areas greater than 20 m
2
 were evaluated. Because the point densities of the 

BDSM and ADSM are different and the footprint data include some errors, perfect matching of the DSMs with the building 

footprints could not be achieved. For this reason, the building footprints were reduced by 1 m (i.e., the reduced polygon is 

located inside a building footprint), and they were projected onto the same reference system as that of the DSMs (Figure 4). 

The Lidar data within the reduced building boundaries were then extracted and processed. The reason for using the reduced 30 
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building boundaries was to discard the DSM data near the building’s boundaries in the subsequent analysis. The distance of 

the buffer (1 m) was decided based on a preliminary evaluation of the data (Moya et al., 2016).  

Figure 4 illustrates five buildings located in the study area. For each case, the BDSM (blue dots), the ADSM (red dots), 

and the difference of the two DSMs are depicted. These buildings were selected in order to demonstrate different damage 

patterns: non-damaged, tilted, and collapsed buildings. It is worth noting that the difference between the DSMs for a non-5 

damaged building (Figure 4a) shows high values around the boundary of the building footprint, which was caused by the 

effect mentioned earlier. These errors are certainly present for tilted buildings as well and make damage detection very 

challenging (Figure 4b). Figure 4c shows a typical collapsed steel-frame building with a well-known damage pattern that 

occurs with a soft story or a weak story, that is, a significant difference of the stiffness/resistance between one story and the 

rest. They show a significant horizontal/vertical movement, which is easier to detect by Lidar data. Figure 4d shows a 10 

collapsed wooden building that was shifted significantly in the horizontal direction; conversely, the collapsed wooden 

building shown in Figure 4e does not exhibit such horizontal movement, only a vertical shift. Lateral spread of debris is an 

important issue when the building is located along a main road. For almost all the collapsed buildings, a clear decrease in 

building elevation was observed from the Lidar DSMs. 

The number of buildings within the study area is very large, so it is necessary to implement an automated procedure to 15 

evaluate the extent of their damage. In this study, three parameters were used: the average height difference between the two 

DSMs (H) within the reduced building footprint, its standard deviation (), and the correlation coefficient (r) between the 

two DSMs. These parameters were calculated for each building using the following equations: 
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where i ∈ {1, 2, …, N} and N is the number of elevation points inside a given reduced building footprint. Hai and Hbi are 

the elevations from the ADSM and BDSM, respectively. The correlation coefficient ranges from -1.0 to 1.0 and has proven 20 

to be effective in detecting changes from a pair of satellite images (Liu et al., 2013; Uprety et al., 2013). A value of r close to 

1.0 indicates no change.  

Yamada et al. (2017) presented the distribution of building damage in the central part of Mashiki, where the damage was 

determined from aerial photos and field surveys. The damaged buildings were classified into four categories: no damage 

(D0), partially/moderately damaged (D1-D3), severely damaged/inclined (D4) and story collapse (D5). Here, D1-D5 25 

represents the degree of damage according to Okada and Takai (2000), which is similar to G1-G5 of the European 
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Macroseismic Scale (EMS-98). Figure 5 shows the damage distribution over the surveyed area, which is located along the 

north side of the Akitsu River.  

Figure 6 shows the scatter plots of the parameters calculated for the surveyed buildings, and Figure 7 shows the 

histograms of the three parameters for the buildings with different damage levels, where the average (solid line) and the 

standard deviation (dashed line) are also included. Significant overlap of damage levels D0, D1-D3, and D4 was observed 5 

regardless of which parameter was chosen. On the other hand, collapsed buildings (D5) tend to have large negative values of 

H. Therefore, this paper focuses on the detection of collapsed buildings. It is important to note that few collapsed buildings 

show positive values of H. A closer look showed that those buildings were covered by a neighboring building that had 

collapsed.  

Although H seems to be the dominant parameter for extracting collapsed buildings, the other two parameters ( and r) 10 

can still provide additional information. For instance, if we observe the collapsed buildings from the scatter plot in Figure 6c 

(red marks), a trend can be observed in which r trends to one when  is close to zero. This trend is related to the collapse 

patterns and can be observed for the collapsed buildings shown in Figure 4. Figure 4d shows a completely collapsed building, 

where the debris has spread laterally. For those cases, the values of r are low and the values of  are large. On the other hand, 

Figure 4e shows a collapsed building whose roof remained almost the same shape while it collapsed almost vertically. This 15 

means that all the elevations inside the footprint decreased by about the same amount, thus leading to a high value of r and a 

low value of . This pattern is often difficult to detect from optical aerial and satellite optical images because the sensor 

measures the landscape vertically. The histograms for collapsed buildings (Figure 7) shows that several collapsed buildings 

have a value for r greater than 0.5, and it would be difficult to detect this from aerial or optical satellite imagery. Readers 

might notice that non-collapsed buildings also have a value of r close to 1 and  close to zero; however, those can be first 20 

filtered using H. Then, the pattern of collapse can be evaluated from the other two parameters (a process known as a 

decision tree). 

Within the study area, 26,128 building footprints were extracted. It is worth mentioning that few buildings were not well 

registered in the GIS map. Figure 8 shows the parameters calculated for each building, where the shaded color depicts the 

density of the dots. As seen, most of the points are located at approximately (H, , r) = (0 m, 0.5 m, 0.9), which indeed 25 

represents non-collapsed buildings. Several buildings show positive values of H. A closer look revealed two principle 

factors: (1) the collapse of a neighboring building and (2) plastic covers placed over the roof for protection from the rain.  

The next concern was to define a criterion to set threshold values that can differentiate collapsed/non-collapsed buildings 

properly. A number of options were evaluated in this study. Since it is obvious that the buildings with clear negative values 

of H correspond to collapsed buildings, we first analyzed the classification using a threshold for H only. The buildings 30 

whose H values were smaller than that threshold were classified as collapsed; in contrast, the buildings whose H values 

were greater than the threshold were classified as non-collapsed. The possible thresholds were tested on the buildings 

surveyed by Yamada et al. (2017). Figure 9 shows the Cohen’s Kappa coefficient and the overall accuracy calculated from 
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the comparison between the estimated collapsed and non-collapsed buildings (i.e., using a given threshold) and the building 

damage classes based on the ground truth. For the comparison, the buildings with damage levels D0, D1-D3, and D4 were 

labeled non-collapsed buildings. The Cohen’s Kappa (k) coefficient and the overall accuracy (OA) are expressed as follows: 
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where p11 and p12 are the ratio of non-collapsed buildings predicted as non-collapsed and collapsed buildings, respectively. 

p21 and p22 are the ratio of collapsed buildings predicted as non-collapsed and collapsed buildings, respectively. From Figure 5 

9, it is observed that a threshold value of -0.5 m gave the highest values for both the Cohen’s Kappa coefficient (0.80) and 

the overall accuracy (0.93). 

To determine if the use of all the parameters could produce better accuracy in detecting collapsed buildings, the Support 

Vector Machine (SVM) method was selected to construct a plane that separates collapsed and non-collapsed buildings in the 

three-dimensional database (H, , r). The plane has the largest distance from the nearest training data (ground truth data). 10 

Using kernel functions, SVM can be used to construct a non-linear function as well; however, in this study we only 

evaluated linear functions (i.e., a plane). Figure 10 shows the plane constructed using SVM, where the red and blue marks 

depict the collapsed and non-collapsed buildings based on the ground truth, respectively. The plane was constructed using 

the same amount of data for the two classes. Thus, 205 non-collapsed buildings were selected randomly from the surveyed 

data. The analysis was performed several times, and although the plane obtained showed small variations due to the random 15 

selection of the training data, the Cohen’s Kappa coefficient produced in each analysis was almost constant with minor 

fluctuations around 0.80. The accuracy produced by SVM is very similar to the accuracy obtained when only a H threshold 

is used. 

This study also evaluated the potential use of unsupervised classification to extract collapsed buildings. Specifically, K-

means cluster analysis was applied to all the data in the study area. Unlike SVM, K-means clustering does not require 20 

training data. Therefore, the database of all the buildings in the study area (Figure 8) was used. The method clusters the data 

and separates them into two groups, which represent the collapsed and non-collapsed buildings. The objective of the method 

is to minimize the inertia of each group, that is, the summation of the squared distance between all the data points of a group 

and its centroid. Figure 11 represents the predicted collapsed and non-collapsed buildings using the K-means clustering 

method, for which the Cohen’s Kappa coefficient obtained was 0.76. Figure 12 shows the confusion matrix calculated from 25 



7 

 

the comparison between the ground truth data and the predicted results from the three methods explained above: applying a 

H threshold, SVM, and K-means clustering. The first two methods show the same level of accuracy, while K-means 

clustering shows a lower accuracy.  

Figure 13 illustrates the spatial distribution of collapsed buildings estimated using a H threshold of -0.5 m. A large 

number of collapsed buildings were observed in the study area (Figure 13a). The red and black polygons represent the 5 

collapsed (D5) and non-collapsed (D0-D4) buildings, respectively. The color of the pixels represents the difference in 

elevations between the ADSM and BDSM. Blue pixels depict differences of elevations less than -0.5 m, and yellow pixels 

represent differences greater than 0 m. Figure 13b and Figure 14 provide a closer look of the areas where the collapsed 

buildings are concentrated. Figure 13b also depicts the location of the collapsed buildings surveyed by Yamada et al. (2017) 

as black triangles. Within the study area, a total of 26,128 buildings were evaluated, and 1,760 buildings were classified as 10 

collapsed H less than -0.5 m). 

It was observed that some buildings collapsed by the foreshock (April 14 event) were also detected by the Lidar methods. 

In order to be detected, the debris of those buildings should be either severely disturbed by the mainshock (April 16 event) or 

removed before the ADSM was recorded. For instance, Figure 15 shows two buildings collapsed during the foreshock 

(Figure 15a). However, because the mainshock produced significant reduction of their elevations (Figure 15b), it was also 15 

detected from the pair of Lidar. 

4 Discussion 

This paper evaluated the use of Lidar data to detect damaged buildings by means of three parameters: H, , and r. It was 

found that collapsed buildings can be extracted precisely from the average difference of heights, H. However, the other two 

parameters can provide additional information about the collapse pattern.  20 

Some words regarding sources of error that were present in this study should be mentioned. The footprint data provided by 

the Geospatial Information Authority of Japan (GSI) is rather precise but not perfect. Three drawbacks were observed: (1) a 

few buildings were not included in the database, (2) a slight shift between the building footprint and corresponding Lidar 

data is sometimes observed, and (3) in some cases, a group of buildings, consisting mostly of two or three buildings, were 

registered within one building footprint. These uncertainties may have produced errors in the detection of collapsed 25 

buildings. However, they did not have a significant impact on the overall results, which is confirmed in Figure 9, where the 

Cohen’s Kappa coefficient and the overall accuracy are significantly high. This problem can be solved by performing 

manual inspection or automatic detection of buildings from the BDSM in order to update the dataset. However, the authors 

decided to work with the data in its current state because this uncertainty is likely to be present in other real situations where 

a quick report on damage extent is required.  30 

Of the three methods evaluated here, K-means clustering exhibits the lowest accuracy. The main reason is that , unlike 

SVM method, K-means clustering does not use any training data. However, it produced a Kappa coefficient of 0.76 and an 
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overall accuracy of 92%, which is still quite good. The K-means clustering method can be useful for taking a first glance at 

the distribution of collapsed buildings because the method does not require any training data. The procedure is well-known 

and robust, with several efficient algorithms with proven fast convergence. 

5 Conclusions 

In this study, the spatial distribution of collapsed buildings was extracted from a pair of Lidar datasets taken before and after 5 

the 2016 Mw 7.0 Kumamoto earthquake. For this purpose, geographic information of building footprints was employed. 

Three parameters were used: the average (H) and standard deviation () of the height differences between the two DSMs 

and the correlation coefficient between them (r). The parameters were evaluated using the building damage survey dataset 

obtained by Yamada et al. (2017); H was found to be very efficient for extracting collapsed buildings. However, the other 

parameters provided insights into the collapse pattern. After evaluating different methodologies to extract collapsed 10 

buildings, buildings with H less than -0.5 m were considered as collapsed. The distribution of collapsed buildings obtained 

by Yamada et al. (2017) was illustrated together with the height difference between the two DSMs, and good agreement was 

observed. From a total of 26,128 evaluated buildings, 1,760 collapsed buildings were extracted. To our knowledge, this 

result may be the first case where a large number of collapsed buildings were extracted from a pre- and post-event Lidar 

DSM pair. 15 
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Figure 1: The post-event Lidar data for the study area. Shaded colors represents the elevation. The green rectangle shows the 

locations of the area surveyed by Yamada et al. (2017). The inset shows Kyushu Island, and the blue polygon in the inset depicts 

the study area 

 5 
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Figure 2: Estimated three-dimensional coseismic displacement after the mainshock of the 2016 Kumamoto earthquake. The black 

arrows and the shaded colors indicate the horizontal and vertical displacements obtained from Lidar, respectively (Moya et al., 

2017). The blue arrows indicate the horizontal displacements at the control points measured by the Geospatial Information 

Authority of Japan (2016). 5 

 

 

Figure 3: Comparison between the coseismic displacements estimated from the Lidar data (Moya et al. 2017) and from field 

measurements (Geospatial Information Authority of Japan, 2016) 
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Figure 4: Examples of collapsed buildings extracted using the Lidar data. The left column shows the photos taken after the 

mainshock by the authors. The middle column shows the Lidar data, where the blue points depict the BDSM and the red points 

the ADSM. The right column shows the elevation differences between the two DSMs, where the solid lines depict the building 

footprints and the dashed lines depict the footprint reduced by 1m. 5 
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Figure 5: Building damage survey data from Yamada et al. (2017). The location of the survey area is shown in Figure 1. 

 

 5 

Figure 6: Scatter plots of the three parameters (H, , r) calculated from the Lidar DSMs for the buildings surveyed by Yamada 

et al. (2017). 
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Figure 7: Histograms of the three parameters (H, , r) calculated from the Lidar DSMs for the buildings surveyed by Yamada 

et al. (2017), separated into four damage levels. 
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Figure 8: Scatter plots of the three parameters (H, , r) calculated for all the buildings in the study area. The color represents 

the density of points, where red shows the area with the highest density. 

 

 5 

Figure 9: Kappa coefficient (left) and overall accuracy (right) obtained from the comparison between the data surveyed by 

Yamada et al. (2017) and the estimated collapsed buildings based on different H threshold values. 
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Figure 10: Classification of collapsed (red) and non-collapsed (blue) buildings using the three parameters based on SVM. 

 

Figure 11: Classification of collapsed (red) and non-collapsed (blue) buildings using the three parameters based on the K-means 5 
clustering method 

 

Figure 12: Confusion matrix calculated from the comparison of the ground truth data and the predicted damage levels based on 

the H threshold (a), SVM (b), and K-means clustering (c). Two damage levels, non-collapsed (0.0) and collapsed (1.0), were 

employed. 10 
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Figure 13: (a) A map showing the distribution of collapsed (H < -0.5 m) buildings, shown as red polygons, in the study area. The 

pixel color represents the difference in elevations between the BDSM and ADSM. The green squares show the locations of areas 

shown in Figure 13 (b) and Figure 14. (b) Close-up view of Area (b) where the collapsed buildings were concentrated. The black 

triangles show the D5 buildings from Yamada et al. (2017). 5 
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Figure 14: Close-up view of Areas (c) and (d) in Figure 13 (a) where collapsed buildings are concentrated. The red and green 

polygons are the collapsed and non-collapsed buildings estimated using the threshold (H < -0.5 m). 
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Figure 15: (a) Aerial image taken on April 15; (b) Aerial image taken on April 23. The thick red polygons shows buildings that 

collapsed after the foreshock and were detected using the H  threshold. 


