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Abstract. To resist marine submersion, coastal protection must be designed by taking into account the most accurate 

estimate of the return levels of extreme events, such as storm surges. However, because of the paucity of data, local 

statistical analyses often lead to poor frequency estimations. Regional Frequency Analysis (RFA) reduces the uncertainties 

associated with these estimations, by extending the dataset from local (only available data at the target site) to regional 15 

(data at all the neighboring sites including the target site) and by assuming, at the scale of a region, a similar extremal 

behavior. RFA, based on the index flood method, assumes that, in a homogeneous region, observations at sites, normalized 

by a local index, follow the same probability distribution. In this work, the spatial extremal coefficient approach which 

allows to quantify the similarity between the extremes of one site and another site is calculated and the spatial extremogram 

which is a graph that represents all these coefficients calculated for a given target site and all others sites is used to form a 20 

physically homogeneous region centered on the target site. The approach is applied on a database of extreme skew storm 

surges and used to carry out a RFA. 

Key words: Regional Frequency Analysis; Spatial-extremogram, Surges. 

1 Introduction 

To resist marine submersion, coastal protection must be designed by taking into account the most accurate estimate of the 25 

return levels of extreme events, such as extreme sea level or storm surges. 

When performing a local analysis in order to estimate high return levels, the local duration of observation is often too low 

to obtain accurate estimations of the return levels (associated typically with a return period of 100 or 1000 years). For 

example, storm surge records calculated from tidal gauge measurements from one site are usually shorter than 30 years. 

These uncertainties can be reduced by a Regional Frequency Analysis (RFA) developed by Dalrymple (1960), which tries 30 

to exploit the similarities between sites. This kind of analysis is based on the index flood method and assumes that within 

a homogeneous region, extreme events normalized by a local index representing local features, are drawn from a common 

regional distribution. 
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The principle proposed by Dalrymple (1960) and the approach developed by Hosking and Wallis (1997) were applied, for 

example, for skew storm surges (Bardet et al., 2011; Bernardara et al., 2011). 

The grouping of sites into homogeneous regions defines the way to exploit regional information and, then, can have a 

significant impact on final results. Numerous hydrological papers have tried to address the formation of homogeneous 

regions based, for example, on the study of the variables or parameters that describe at least in part the phenomenon of 5 

interest and which are physically related to it.  

Authors such as Gabriele and Chiaravalloti (2013) recommended the use of meteorological information to delineate 

homogeneous regions and to carry out RFA of rainfall. However, a bibliographical review indicates that, before Weiss et 

al. (2013) and Weiss et al. (2014a), no specific method for marine hazards was developed to delineate homogeneous 

regions via a physical approach. The criteria of merging sites in a homogeneous region were mainly based on statistical 10 

arguments, thereby excluding physical considerations. For example, by using data from 18 sites located on the west French 

coasts to extract storm surges, Bernardara et al. (2011) estimated extreme and the whole area was taken as homogeneous 

based on a statistical test of regional homogeneity. 

In order to perform a RFA of extreme skew storm surges, Weiss et al. (2013) proposed a method based on physical 

considerations to delineate and form homogeneous regions which depend on the extreme storms. The method, which has 15 

also been applied to waves (Weiss et al., 2014a), is based on typical storm footprints which are identified through a 

clustering algorithm which uses a criterion based on probabilities linked to storm propagation. Sites are then grouped into 

the different regions representing storm footprints. These regions can be considered as physically homogeneous because 

the same storms likely impact all sites inside a given region, and any storm on a region will likely remain enclosed in this 

region. 20 

However, the delineation of a homogenous region usually leads to the problem of the so-called “border effect”. Indeed, if 

one is interested in a target site which is very close to the region limit, the information at the site located on the other side 

of the region is excluded, even though both sites offer similar information and have similar asymptotic properties. For 

example, in the physically homogeneous regions formed obtained by Weiss et al. (2013), it may be noted that, two French 

sites, Boulogne-Sur-Mer and Calais are located in two physically different homogeneous regions while these cities are 25 

very close (they are only separated by about thirty kilometers). We can notice similar issues for all areas composed of two 

sites located at each side of a border between two regions. A physically homogeneous region defined by Weiss et al. (2013) 

is a typical storm footprint, and it can be expected, in fact, that very close sites facing similar storms are in the same area. 

Moreover, Weiss et al. (2013) gather in the same region very distant sites, which raises the question of whether there are 

remaining traces of heterogeneity, even in a region considered statistically homogeneous. Acreman and Wiltshire (1987) 30 

have suggested that the sites located near the border between 2 regions could be considered partially owned by each of 

those two regions. However, Burn (1990) notes that there is no need to define boundaries between regions and a particular 

region can be defined for each site (which consists of sites similar to the site of interest in terms of extremes).  

To form a physically homogeneous region centered on a target site, Hamdi et al. (2016) had recently proposed an approach 

using the spatial extremal coefficients indicating the dependence between observations and measure the neighborhood 35 
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between sites. Herein, we define a pairwise distance between sites based on the spatial extremal coefficients and we use 

the spatial extremogram, which is a graph that represents all these coefficients calculated for a given target site and all 

others sites, to carry out a RFA applied on extreme skew storm surges. The composition of regions built herein and which 

can be thought of as neighborhoods is based on the similarity of sites attributes. The higher the value of the spatial extremal 

coefficient between the target site and another site is, the greater the dependency of extreme storm surges; therefore 5 

indicating that storms impacting the target site tend to also impact the other site which can be included in the region of the 

target site. Indeed, in a specific region, the process generating storms and impacting the target site will also tend to impact 

the other sites in the region and vice versa. We can then consider that the processes generating storms in a region are 

physically homogeneous. So it is assumed that sites, with a sufficiently high value of the spatial extremal coefficient with 

the target site, may be included in the same physically homogeneous region or, better, the region of influence of the target 10 

site. The region may also be regarded as a typical storm footprint in the neighborhood of the target site. 

Once a physically homogeneous region is formed around a target site, the statistical homogeneity is then checked. The 

whole procedure to estimate the regional law (and, in particular, the dependence model and the way to calculate the 

effective duration) is then applied in the same way as Weiss et al. (2014), starting from the physically homogenous regions 

defined from the spatial extremogram. 15 

The detail of the methodology is described in section 2. In section 3, one will find an application of this method carried 

out for a database of extreme skew storm surges collected at 67 sites located along the Spanish, French and UK coasts. In 

order to compare the results obtained in this study with those of Weiss (2014c), the database used in section 3 is the same 

used by Weiss (2014c). 

2 Methodology 20 

The objective is to form physically homogeneous regions for RFA on extreme skew storm surges. The proposed method 

is based on the use of the spatial extremal coefficients. 

2.1 Formation of physically homogeneous neighborhood of a target site by using the spatial extremogram 

Let 𝑋 be the random variable representing the skew storm surges at a site S1, (the target site for instance), and 𝑌 be the 

random variable for the skew storm surges at site S2. Let  𝑞1 and 𝑞2 be the thresholds above which skew storm surges are 25 

considered as extreme.  

If ℎ is a time offset, we denote 𝑋ℎ the time series of 𝑋 shifted by ℎ: 𝑋ℎ(𝑡) = 𝑋(𝑡 + ℎ). For ℎ = 0, we have the same series. 

We consider that the sites, S1 and S2, are inside the same physically homogeneous region if at least a part of extreme skew 

storm surges from each site are likely to be simultaneously generated by the same storms (for the same time lag), which 

means that the extreme skew storm surges of the two sites are dependent. In the spatial and pairwise dependence description 30 

we should also include the temporal dimension, because storm conditions can last several days. Then, a pairwise 
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probability of dependence can be defined by the spatial extremal coefficient 𝜌(𝑋, 𝑌, ℎ) for bivariate time series, used also 

by Davis et al. (2011) and defined within Eq.  (1): 

𝜌(𝑋, 𝑌, ℎ) = lim
𝑛→∞

( 𝑃(
𝑋ℎ

𝑞𝑋,𝑛
∈ 𝐴|

𝑌0

𝑞𝑌,𝑛
∈ 𝐵)).         (1) 

Where 𝑞𝑋,𝑛 and 𝑞𝑌,𝑛 are the (1 − 1/n)-quantiles of the distribution of 𝑋 and 𝑌, and A and B are finite intervals that are 

bounded away from 0 (𝐴 and 𝐵 will be included inside [1; +∞[). 5 

Davis et al. (2011) defined the natural estimator 𝜌̂(𝑋, 𝑌, ℎ) of 𝜌(𝑋, 𝑌, ℎ), the empirical spatial extremal coefficient, which 

will be used in this study, and which can be written as follows: 

𝜌̂(𝑋, 𝑌, ℎ) =
∑  𝐼[𝑋(𝑡)>𝑞𝑋 𝑎𝑛𝑑 𝑌(𝑡+ℎ)>𝑞𝑌]

𝐷−ℎ
𝑡=1

∑ 𝐼[𝑋(𝑡)>𝑞𝑋 ]
𝑁
𝑡=1

.         (2) 

Where 𝐼f equal 1 if f is true, and 0 otherwise. Moreover, 𝐷 is the number of data occurring at the same time at the site S1 

and S2, and 𝑞𝑋 and 𝑞𝑌 are extreme quantiles. Note that, we have to ensure that 𝐷 is large enough to have the guarantee 10 

that the probability of dependence is rather significant. Of course, we have 𝜌̂(𝑋, 𝑌, ℎ) ∈ [0; 1] and 𝜌̂(𝑋, 𝑌, ℎ) ≠ 0 indicates 

some dependency between 𝑋 and 𝑌 on extreme values. A threshold 𝜌0 is defined to indicate if the probability of dependence 

between 𝑋 and 𝑌 is high enough to consider S1 and S2 inside the same physically homogeneous region: if 𝜌̂(𝑋, 𝑌, ℎ) >

𝜌0 then S1 and S2 are considered to be part of the same physically homogeneous region. There is very often a residual 

probability of dependence which can be considered as noise, even between sites far enough; therefore, 𝜌0 has to be great 15 

enough to make sure that the sites only linked by a residual probability of dependence (considered as noise) do not belong 

to the same region. The minimal value of 𝜌0 can be found when analyzing the probability of dependence between all sites 

and the target site which allows for the evaluation of the order of magnitude of the maximum residual noise 𝑚𝑟. The 

determination of 𝜌0 has to allow for the merging of any sites within the same region which have an extreme dependence 

with the target site, and to put aside sites only linked to the target site by a probability of dependence considered as residual 20 

noise. 

The empirical quantiles 𝑞𝑋 and 𝑞𝑌 are set in order to select in the 𝑋 and the 𝑌 series only few storms per year, which allows 

for the computation of the empirical spatial extremal coefficient from the biggest storm of each year. Moreover, ℎ, the lag 

time, is large enough to allow a storm that occurred at one site to propagate eventually to the other site. If ℎ is set to several 

values then, between two sites, several values of 𝜌̂ are estimated and the greatest value of 𝜌̂ is kept. 25 

Finally, the neighborhood of a target site is formed by all sites which satisfy a probability of dependence with the target 

site greater than 𝜌0. From a statistical point of view, this means that if a storm affects a given target site, this storm will 

likely impact (and therefore not systematically) only sites enclosed in the target site's region and vice versa. The 

neighborhood of the target site can be seen also as the region of influence around the target site (the so-called RoI approach, 

Burn, 1990). 30 
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2.2 Independent storms extraction 

In this section, we describe the procedure to construct a sample of independent storms. The procedure is the same as the 

one used in Weiss et al. (2013) and applies to each neighborhood of each target site obtained from section 2.1. The 

procedure is summarized below: 

We define storm as a physical event that generates extreme skew storm surges in at least one site in the neighborhood of a 5 

target site (the study area). In this section, an observation is considered as extreme for a given site, if it exceeds 𝑞𝑝, where 

 𝑞𝑝 is the p-quantile of the initial at-site skew surge series, with p close to 1. Thus, a site is considered impacted by a storm 

if 𝑞𝑝 is exceeded. Moreover, at a given site, one or more extremes can occur during the same storm, according to its 

duration. When several extremes appear, only the maximum value is retained. This operation allows us to get independent 

extremes extracted from storms at site scale. 10 

The detection of storms which propagate both in space and in time, rely on a spatio-temporal declustering procedure. The 

main idea is that extreme neighbors in time and in space are considered to be part of the same storm. In other words, two 

extremes are spatio-temporal neighbors if they: 

- are among the γ-nearest neighbors of each other. 

- occurred within Δ hours, 15 

Thus, to detect a storm, three parameters are needed: p, setting its impact on a given site, and (Δ, γ) which are linked and 

depend on its spatio-temporal propagation. In order to guarantee an accurate detection of the physical events, (p, Δ, γ) 

should be chosen correctly. Since we work on the same database of skew storm surges as the one used by Weiss et al. 

(2013), those parameters will be the same as their, who obtained them after various tests: 𝑝 = 0.995, Δ = 24 h, 𝜂 = 14. We 

also, like in the study of Weiss et al. (2013), consider here the hypothesis often accepted in the literature that the 20 

declustering procedure leads to a sample of independent storms. In order to detect storms, Nissen et al. (2010) used a 

similar way as described above but from wind speed observations. 

Therefore, we assume that this procedure allows for the construction of independent storms for each region defined as the 

neighborhood of a target site. 

The storms extracted in this section represent physical events generating extremes; however, for statistical aspects, and in 25 

order to build the regional sample, a sub-selection of these storms is extracted in order to focus on the most intense events. 

In particular, like Weiss (2014c), we redefine storms in such a way that, on average and at each site, there is λ storm(s) a 

year. Weiss (2014c) suggest to use λ=1, and we set λ to the same value, which enables us to carry out the statistical analysis 

from the most the biggest storms. Bernardara et al. [2014] recommend this ‘‘double-threshold’’ procedure to address auto-

correlated environmental variables using the peak over the threshold method. 30 
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2.3 Regional statistical homogeneity 

RFA of extreme storm surges requires statistically homogeneous regions. Like in Weiss et al. (2013), the physically 

homogeneous regions obtained with the method described in section 2.1 should be also statistically homogeneous. Two 

tests are used to verify that regions are statistically homogeneous:  

The Hosking and Wallis test (Hosking and Wallis, 1997) can be used to assess the statistical homogeneity of a region. 5 

Their heterogeneity indicator H measures whether the dispersion between sites is similar to a value that would be expected 

in a statistically homogeneous region. Hosking and Wallis suggest that a group of sites may be regarded as “acceptably 

homogeneous” if H < 1, “possibly heterogeneous” if 2 > H ≥ 1, and “definitely heterogeneous” if H ≥ 2. 

The discordancy criterion Dc of (Hosking and Wallis, 1997) can identify discordant sites by indicating if, in a given region, 

a site is significantly different, in terms of L-moments, from the other sites. If Dc > 3, a site can then be considered as 10 

discordant. 

For each region defined as the neighborhood of the target site, the homogeneity and the discordance test are performed. If 

one site is found to be discordant, then a second neighborhood of the target site is defined without the discordant site. For 

target sites where the quantiles’ estimations are particularly important, an RFA can be carried out on the two neighborhoods 

(the one with the discordant site and the one without it) in order to compare the results and to keep the highest one (for 15 

conservative reason).  

Finally, in all cases studied, we checked that the target site is not on the edge of its region. This must be the case most of 

the time. But, if it is not the case, we consider that another method (for example the one developed by Weiss, 2014c), could 

be better adapted to estimate the quantiles at the target site. 

2.4 Fitting the regional samples, and quantiles estimations 20 

RFA assumes that within a homogeneous region, extreme events normalized by a local index are drawn from a common 

regional distribution. The local index represents local specificities. Here again, the same procedure as the one developed 

by Weiss (2014c) is used. This procedure is summarized below: 

For each site i, let’s denote 𝑢𝑖 the storm threshold which is exceeded by the skew surges 𝜆 times per year on average. Let 

the ni-sample 𝑋𝑖 be the exceedance of 𝑢𝑖 . It is assumed that 𝑋𝑖 is drawn from a GPD law. 25 

The annual quantile 𝜇𝑖 of each site is used to normalize local sample 𝑋𝑖. 𝑍𝑖 denotes the normalized local sample for the site 

i. 

For each storm defined in section 2.2, we keep only the maximum normalized skew storm surge in the regional sample, 

ensuring sample independence. For statistical aspects, Weiss (2014c) use a threshold which allows to select the most 

intense storms, and corresponds to a value of 𝜆 equal to 1. 𝑀𝑠 denotes this sub-selection of the maximum normalized skew 30 

storm surge sample for a specific region centered on a target site which corresponds to 𝜆 = 1. Note that, due to the 

contribution of the others sites in a region, the value of 𝜆 is not too low to get a lot of events in the regional sample and, in 
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the case of 𝜆 = 1, equation A2 shows that the number of the selected skew storm surges is equal to the effective duration. 

This number, which depends on the region, is high enough (more than 151) in every tested case to carry out the fitting.   

A Kolmogorov-Smirnov test is carried out in order to check whether the law of 𝑀𝑠 can be considered as the law of 𝑍𝑖 . If 

it is the case, 𝑀𝑠 can be considered as the regional sample. 

A Generalized Pareto Distribution (GPD) is fitted to the regional sample taking into account the seasonality (the threshold 5 

of the regional GPD law is equal 1, in the case of peak over the threshold method applied to the regional sample). Seasonal 

effects can be modelled through a sinusoid and the regional distribution is a discrete mixture of GPD where the scale 

parameter varies periodically and smoothly across the seasons of occurrence of storms. 4 seasons are considered here: 

summer (June, July, August,), autumn (September, October, November), winter (December, January, February) and spring 

(March, April, May). The AIC criteria is taken into account to select the more adequate distribution. The good adequacy 10 

of the fit curve to the regional sample is also checked visually. 

Regarding the effective duration of the regional sample, which is denoted 𝐷𝑒𝑓𝑓 , this value depends on the effective duration 

𝑑𝑖 of each local sample (i varying from 1 to N, where N is the number of sites that are included in the region) and is closely 

related to the spatial dependence (characterized by a 𝜑 function). 𝐷𝑒𝑓𝑓 is estimated by Weiss et al (2014b). Details about 

𝜑 and 𝐷𝑒𝑓𝑓 are given in Appendix A.   15 

Finally, the local T-return level 𝑥𝑇
𝑖  of the target site i, is calculated within the following equation: 

𝑥𝑇
𝑖 = 𝜇𝑖𝑦𝑇             (3) 

Wherein 𝑦𝑇  is the regional T-return level of the region focused on the site i. 

3 Application 

3.1 Skew storm surge data  20 

The database used in this study is the same as the study of Weiss, (2014c), which enables a simple comparison between 

our results and the results obtained by Weiss, (2014c). The raw data used is a temporal series of hourly sea level 

observations collected at 67 ports along the Spanish, French and U.K. coasts (see Fig. 1). In Appendix B, we recall some 

elements about the database.  

The construction of physically and statistically homogeneous regions within the results of Weiss (2014c) are presented in 25 

Fig. 2. 

Note that some sites, like Calais in northern France (inside the red circle on Fig. 2), are located very close to the border 

between two regions. Nevertheless, on both sides of the border the process generating storms is likely the same. In addition, 

the region 1 is very large (for example Boulogne on the extreme North of France is inside the same region as Saint-Jean-

de-Luz at the extreme South of France, or in the north of Spain), with perhaps differences between the process generating 30 

storms in the north of France and in the north of Spain (which may cause traces of heterogeneities). Furthermore, in the 

study of Weiss (2014c), the region where La Rochelle and Brest are included has a heterogeneity measure equal to 1.1, 
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and then is only considered as possibly statistically homogenous (according to the criteria of Hosking and Wallis described 

in section 2.3). 

3.2 Formation of homogeneous region centered on a target site 

Quantiles 𝑞𝑋 and 𝑞𝑌 should not be too small, otherwise the spatial extremal coefficient won’t be performed from extreme 

values. In addition, quantiles 𝑞𝑋 and 𝑞𝑌 should not be too large, otherwise the spatial extremal coefficient won’t be 5 

performed on enough values. So there is a trade-off to be found. 

Values of 𝑞𝑋 and 𝑞𝑌 are tested in order to select first 4 and then 6 storms a year, which finally give information from the 

spatial extremogram that led to similar conclusions. Therefore, the empirical quantiles 𝑞𝑋 and 𝑞𝑌 are set in order to select 

(in the 𝑋 and the 𝑌 series) only 4 storms a year. This value allows for the computation of the empirical spatial extremogram 

from the biggest storm of each year.  10 

Moreover, ℎ, the lag time, has to be large enough to allow a storm which occurs at one site to propagate eventually to the 

other site. If we note ds, the time between two skew storms surges (it means about ±12ℎ), then tests performed with h>24h 

show little interest compared with tests where h=0 or h=ds. 

ℎ is finally set to two values : 0 and ds. Then, between two sites, two values of 𝜌̂ are estimated and the greatest value is 

kept.  15 

And at last, we set 𝜌0 to 0.3, which allows for the elimination of any sites associated with a value of the spatial extremal 

coefficient that looks like a residual noise from the target site’s region. 

However, we will see, that for some special cases (rare cases), one can consider including a site even if the spatial extremal 

coefficient with the target site shows a slightly smaller correlation than 𝜌0. 

3.3 Application for several target sites 20 

We apply our methodology to three sites for which we estimate the 1000-years return period quantiles. 

3.3.1 The physically and statistically homogeneous region for Calais 

As previously noted, the particularity of the Calais site is that it is located close to a border of one of the regions found by 

Weiss (2014c) or Weiss et al. (2013). The analysis of the spatial extremogram (see Fig. 3) leads from Calais to the region 

illustrated in Fig. 4. 25 

The Fig. 3 shows, on the vertical axis, the probabilities of the extremal dependence. The x-axis represents the sites which 

are sorted in an ascending order (based on the geographical distance to the target site, the closest sites from the target site 

are on the left). The sites with extremal dependence probabilities greater than a threshold of 0.3 (represented by a red line) 

are considered as potential neighbors of the target site (Calais) and are thus part of the region of interest (of Calais) 

considered to be physically homogeneous (see Fig. 4). In brackets, next to the name of each site i, are indicated the 30 

durations for the year in which the tide gauge of the site i and the tide gauge of the target site have operated simultaneously; 
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therefore, it is the number of years on which the spatial extremal coefficient was calculated. For example, between Calais 

and Dunkerque it is 26 years. If this period is too small, the probability of the extremal dependence may not be relevant, 

and one can ask whether it is appropriate to add the site to the region of the target site. This question must be answered 

case by case. The region built around Calais is shown in Fig. 4. 

As shown in Fig. 4, the region around Calais is slightly smaller than the one obtained by Weiss (2014c) or Weiss et al. 5 

(2013), but more centered on Calais (which is no longer located at the border of a region). This region is considered as a 

physically homogeneous region centered on Calais. We will see that, in general, we find smaller areas than those found by 

Weiss (2014c) or Weiss et al. (2013). But the advantage of a smaller region which is centered on a target site is that it is, 

most likely, more physically homogenous. 

Once the physically homogeneous regions have been identified, the statistical homogeneity must be verified. The Hosking 10 

and Wallis’ homogeneity tests and the discrepancy test described in the section 2.3 are used. A heterogeneity measure H 

of -0.13 was obtained and no discordant sites were found. The region is then considered as statistically homogeneous. 

3.3.2 The physically and statistically homogeneous region for Brest 

In the case of Brest, we note that the region is larger than the one built for Calais (see Fig. 6) with many sites for which 

the dependency probability is at the limit of the dependency threshold. It is especially the case for sites in the Bristol 15 

Channel (UK coast). A study was conducted with and without these sites, which were finally selected in the region. In fact, 

their absence led to the selection of a model that did not fit very well with the data. The spatial extremogram between Brest 

and all other sites is shown in Fig. 5 and Fig. 6 represents the region around Brest. Figure 5 shows, on the vertical axis, the 

probabilities of the extremal dependence and along the horizontal axis we show sites sorted in ascending order based on 

the geographical distance to the target site (the closest sites to the target site are on the left). Like for the previous case of 20 

Calais, the sites located above the threshold of 0.3 (line in red) are integrated into the region of Brest (considered to be 

physically homogeneous). In brackets, next to the name of each site i, durations are indicated for the year in which the 

tide gauge of the site i and the tide gauge of the target site have operated simultaneously (therefore, it is the number of 

years on which the spatial extremal coefficient was calculated). As shown in Fig. 6, the region around Brest is smaller than 

that the one which includes Brest in Weiss (2014c) or Weiss et al. (2013) study (see region 1, Fig. 2) but nevertheless is 25 

better focused on Brest. 

By applying the discrepancy and homogeneity tests, we find no discordant site and the heterogeneity measure H is 0.99; 

therefore, the region is also considered as statistically homogeneous. 

3.3.3 The physically and statistically homogeneous region for La Rochelle 

The La Rochelle site has been the subject of many studies after the Xynthia storm (e.g. Hamdi et al., 2015). In this study, 30 

the region centered on the La Rochelle site raised the question of whether or not to add Saint-Servan and Saint-Malo sites 

in the region. Indeed, although Saint-Servan has a dependency extremal probability of 0.4, this value has been calculated 
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only with a common period with the target site of solely 2 years (which may not be very representative). In addition, Saint-

Malo shares a common period of 14 years with La Rochelle but has an extremal dependency probability of 0.29, just below 

the threshold. 

St. Malo and St. Servan being very close (with a distance of less than 2 km), it seems logical to either add them both to the 

region, or withdraw them both to the region. It was finally decided to integrate them into the region of La Rochelle because 5 

Saint Helier (whose abbreviation is “JER” in Fig. 7), very close also to Saint Malo and Saint Servan, was selected to be 

inside the region of La Rochelle (the dependency extremal probability between Saint Helier and La Rochelle is calculated 

on 14 years and is equal to 0.3). 

However, these examples show that the spatial extremogram is not a tool to be used blindly and that the choice of the 

threshold, which serves as an effective aid to form the region as consistently as possible, does not necessarily need to be 10 

inflexible. Figure 7 represents the spatial extremogram for La Rochelle and Fig. 8 represents the region built focused on 

La Rochelle. As shown in Fig. 8 and as in the case of Calais and Brest, the region around the La Rochelle site is also 

smaller than that obtained by Weiss et al. (2013), but nevertheless better centered on the La Rochelle site. 

By applying the discrepancy test, we find that the site of Eyrac is discordant (Dc=3.65). This site is located in the center 

of the region and this discrepancy could be explained by the specific sea conditions in the Arcachon basin. When Eyrac is 15 

removed from the region of La Rochelle, we find no discordant site and the heterogeneity measure H is 0.53. So the region 

(without Eyrac) is also considered statistically homogeneous. The final region for La Rochelle is shown in Fig. 9. 

3.3.4 Step to build the regional sample 

To estimate the regional distribution we used, for each constructed region, the regional pooling method; however, extreme 

events that can impact several sites (due to the presence of intersite dependence) during a single storm must be considered 20 

only once. Storms elaborate within the procedure described in section 2.2 are a relevant way to suppress the intersite 

dependence. The distribution of the storm regional maximum denoted Ms is now, for each region, supposed to be identical 

as the regional distribution. Of course, we must verify the validity of this assumption. In order to evaluate the null 

hypothesis so that Zi and Ms have the same distribution for each site i,, a Kolmogorov-Smirnov test, as explain in section 

2.4, can be performed. For the three regions built for Calais, Brest, and La Rochelle, we find that no p-values are smaller 25 

than the risk level of 5%, consequently, for each region, the regional distribution can be estimated from each regional 

sample Ms (which is considered for each region as the regional sample). 

3.3.5 Regional effective duration and comparison with results from the study of Weiss (2014c) 

The delineated homogeneous region around a target site is characterized (by the nature of the method) by a strong 

dependence between sites. This spatial dependence impacts, in particular, the regional effective duration (that will be even 30 

lower than if this dependence were high). The effective duration is calculated for each region centered on a target site, as 

explained in section 2.4, and compared with the effective duration of the region built by Weiss (2014c). Results are shown 
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in table 1. Remember that Calais is a part of region 2 in the study of Weiss (2014c), and that Brest and La Rochelle are a 

part of region 1 in the study of Weiss (2014c). 

In table 1, one will notice that our effective durations associated with the region of Calais have the same size as those from 

the region constructed by Weiss (2014c) in which Calais is included. 

For the region of Brest and La Rochelle, one will notice that our effective durations are lower than the ones from the region 5 

constructed by Weiss (2014c) in which the target site is included. However, in all cases, our durations are higher than those 

found by a local analysis. 

3.3.6 Check stationarity 

In order to fit a GPD law within a fixed threshold, we have to test the stationarity of our samples. In order to carry out this 

for each region, we perform a Student test to check the means’ equality of two subsamples of our sample. All tests are 10 

completed with a risk level of 5%. 

3.3.7 Regional fitting for the region focused on Calais, Brest, and La Rochelle 

A Generalized Pareto Distribution (GPD) is fitted to the regional sample, taking into account the four seasons. In Appendix 

C, details are given about the laws which are used. Eight models are possible, and we must now select, from these models, 

the one that best fits our observations. The most commonly used criterion in the literature is the AIC (Akaike Information 15 

Criterion), based on the estimate of maximum likelihood. This criterion is used in this study. The Expsin model is selected 

for Calais and the Gpdcos sin model is selected for Brest and La Rochelle (see Appendix C for the definition of those 

models). Those models are the same models chosen respectively for regions 2 (which includes Calais) and 1 (which 

includes Brest and La Rochelle) in the study of Weiss (2014). Figure 10 shows all the fittings which are performed. As we 

can see on Fig. 10, the fitting looks good: most of the points are inside the confidence intervals which are not so large. 20 

Those elements are also relevant to accept the credibility of the law used for the fitting. 

3.3.8 Return levels and comparison with return levels obtained from the results of the Weiss (2014c) study 

procedure 

The last step in our regional analysis is to calculate the local quantiles by renormalizing the regional distribution by 

multiplying with the local indices. Moreover, by following exactly the same procedure as that followed by Weiss (2014c) 25 

to find the quantiles and the 70% of the confidence interval at the 3 sites of interest, we can finally compare results. We 

then obtain the returns levels shown in table 2. It is worth noting that compared to the procedure followed by Weiss 

(2014c), the confidence intervals herein are not always larger. In addition, in all cases the 2 studies find confidence intervals 

with almost the same magnitudes. 



Marc Andreewsky 

 

12 

 

4 Conclusion 

The aim of our study is to achieve extreme statistics on skew storm surges and to reduce uncertainties that are found in a 

local analysis by using RFA. An important step of the RFA is to form a physically homogeneous region. The method 

which allows one to shape those physical homogeneous regions is based on the use of the spatial extremogram. It helps to 

build the influence region of a target site, and we made the assumption that a relatively high enough probability of 5 

dependence allows one to consider the region as physically homogeneous. 

In most cases, the approach includes (in the same physically homogeneous region) any site near the target site and we can 

expect that, most of the time, a target site can’t be located at the border between two regions. In the introductory section, 

it was stated that the method proposed by Weiss (2014c) to form the region of interest leads to the problem of the so-called 

“border effect”. In our study, the question of “What would be the value of a quantile for a particular site located on the 10 

border of a region if this site belonged to the neighboring region?” should not arise often. This is one of the interesting 

elements of the method we have used. Moreover, the method, unlike the one used by Weiss (2014c), seems to not allow 

two very distant sites to be in the same region. This is quite comforting because it reduces doubts regarding possible traces 

of physically heterogeneity that could be generated by relatively distant sites. 

In addition, the regions seem more consistent geographically than those obtained by Weiss (2014c) because this method 15 

groups sites within a region where the climates are more similar (simply because sites are closer). This leads to a one 

thousand quantiles and the associated confidence intervals of the same magnitude than those found from the results of 

Weiss (2014c) study procedure. This observation consolidates the 2 approaches. 

Finally, compared to the study of Weiss (2014c), the method used herein can likely increase the level of the physical 

homogeneity of the formed regions and decreases, not in all cases but in general, the effective duration of observation. 20 

Nevertheless, cases like the site of Calais (which in this study is no longer close to a border and where the effective duration 

calculated is roughly the same as the one found by Weiss, 2014c) seem to be particularly interesting. A study on 

Dunkerque, not shown here, leads to the same conclusion as the study carried out for Calais, and we should probably find 

other sites as interesting as these 2 sites. 

Furthermore, physical homogeneity likely has an impact on statistical homogeneity and if we use the criterion of Hosking 25 

and Wallis (1997), we can then observe that all regions that we have built are seen as statistically homogeneous. This is 

unlike those built by Weiss (2014c) where we can find that the regions 1 and 5 are only considered as possibly statistically 

homogeneous. 

However, we can put forward a limitation of the method in the formation of the regions. Indeed, when the tide gauge sites 

operated at different times, the common time period between two sites used to calculate the spatial extremal coefficient 30 

may be short. Thus, we can sometimes consider a spatial extremogram calculated on a very short series (or even without 

any data), which may not be relevant. We must therefore take into account this detail during the formation of the regions 

and possibly add or remove a site for which the spatial extremal coefficient does not give us enough relevant information. 

This disadvantage has been particularly highlighted in a study consisting of forming a region focused on Dieppe (not 
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shown here), where the creation of the region using the spatial extremogram has not allowed to construct a region roughly 

focused on Dieppe. This is why it could also be interesting to study the confidence intervals associated with the spatial 

extremal coefficients in order to have more reliability of our estimates of the extremal dependence between sites. 

Finally, one of the possible future improvements, would be the considerations of physical data complementary to the use 

of the spatial extremal coefficient (such as the atmospheric pressure or the wind speed and direction) that would surely 5 

help in the formation of homogeneous regions. 
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Appendix A: Equations used to calculate the effective duration 

Weiss et al. (2014b) use the following equation to estimate 𝐷𝑒𝑓𝑓: 

𝐷𝑒𝑓𝑓 = 𝜑 × ∑
𝑑𝑖

𝑁

𝑁
𝑖=1 .          (A1) 10 

Weiss et al. (2014b) show that 𝜑=λr/λ, where λ𝑟  is the average annual number of storms in the region (and λ the average 

number of storms in a year in any site), and, if 𝑛𝑟 is the number of skew storm surges observed in the region, an estimation 

of 𝐷𝑒𝑓𝑓 is given by:  

𝐷𝑒𝑓𝑓 =
𝑛𝑟

𝜆 
 .           (A2) 

Weiss (2014c) use the same equation for 𝐷𝑒𝑓𝑓 . 15 

Appendix B: Data sources and treatment of eustatism 

French data is supplied by SHOM (Service Hydrographique et Océanographique de la Marine, France) and available on 

the REFMAR (Réseaux de référence des observations marégraphiques) website, while Spanish and UK data are 

respectively supplied by IEO (Instituto Español de Oceanografía, Spain) and BODC (British Oceanographic Data Centre, 

UK). The series range from 1846 (Brest, France) to 2011, they show a mean effective duration of 31 years, and they display 20 

missing values. 

Local mean sea levels may be affected by eustatism, while tidal predictions are given for the present time. In order to 

calculate the actual surges of past periods, the sea level must be corrected from a possible eustatism. If annual sea levels, 

calculated following the PSMSL (Permanent Service for Mean Sea Level) recommendations show significant linear trends, 

then raw sea level data is corrected to ensure the stationarity of annual sea levels. In regions with strong tidal influence, 25 

coastal flooding hazard is more marked around the times of high tide. Therefore, we restricted our attention to skew surge 

series, in order to describe the surge contribution at the maximum tidal level. The skew surge is defined as the algebraic 

difference between the maximum observed sea level around the time of theoretical (predicted) high tide and the predicted 

high tide level. Thus, the resulting skew surge series have a temporal resolution of approximately 12.4 hours. For a more 

detailed introduction on skew surges, see, for example, the study of Bernardara et al. (2011). 30 
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Appendix C: Possible laws for the fitting 

Let’s denote 𝑣 the regional random variable. A Generalized Pareto Distribution (GPD) is fitted to the regional sample 

taking into account the four seasons in the following way: 

∀𝑣 ≥ 1, 𝐹𝑟(𝑣) = ∑ 𝑝𝑟,𝑐𝐹𝑟,𝑐(𝑣)4
𝑐=1          (C1) 

𝑝𝑟,𝑐  is the frequency of occurrence of season c in the regional sample (empirically estimated as the observed proportion of 5 

storms that occurred during season c in the region). We also have: 

𝐹𝑟,𝑐~𝐺𝑃𝐷(1, 𝛾𝑟,𝑐 , 𝑘𝑟)           (C2) 

and:  

log(𝛾𝑟,𝑐) = 𝛾𝑟
0 + 𝛾𝑟

1 cos (
2𝜋

4
𝑐) + 𝛾𝑟

2 sin (
2𝜋

4
𝑐)       (C3) 

Where 𝛾𝑟
0, 𝛾𝑟

1, 𝛾𝑟
2 are 3 parameters to be estimated. 10 

8 models are possible within the possible values of 𝛾𝑟
0, 𝛾𝑟

1, 𝛾𝑟
2, 𝑘𝑟 (see Table C1).  

Appendix D: List of ports where tidal measurements are used 

List of ports where we have data with their abbreviations (see Table D1).  

 

 15 

Table 1.  Comparison of the effective duration found in this study and in the 

study of Weiss (2014c). The effective duration takes into account the dependence 

between sites. The total duration is the sum of the observation times of all sites 

in the region without considering the dependence. 

Regions 

Region 

focused on 

Calais 

Region 

focused on 

Brest 

Region 

focused on 

La 

Rochelle 

Region 1 

from 

(Weiss, 

2014c) 

Region 2 

from 

(Weiss, 

2014c) 

Effective duration (years) 151 348 348 517 151 

Total duration (years) 375 783 605 1011 443 

Table 2.  Comparison of the one thousand years quantile and the 70% of the confidence interval of this quantile found in this 20 
study (RFA Target Focused) and obtained from the results of Weiss (2014c) study procedure, for the three target sites Calais, 

Brest, and La Rochelle. The confidence intervals are calculated using the bootstrap method like in the study of Weiss (2014c). 

Estimated values Type of study Calais Brest La Rochelle 

Q1000 (m) 

RFA Target Focused 1.55 1.68 1.68 

Values found from the results of the 

RFA from Weiss (2014c) study 

procedure 

1.62 1.56 1.67 

CI70% (m) 

RFA Target Focused 0.18 0.19 0.17 

Values found from the results of the 

RFA from Weiss (2014c) study 

procedure 

0.30 0.14 0.15 
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Table C1.  Possible models for the fitting of the regional samples. 

 Model Names Parameters values 

 Exp 𝛾𝑟
1 = 𝛾𝑟

2 = 𝑘𝑟 = 0, 𝛾𝑟
0𝜖𝑅 

 Expcos 𝛾𝑟
2 = 𝑘𝑟 = 0, (𝛾𝑟

0, 𝛾𝑟
1)𝜖𝑅2 

 Expsin 𝛾𝑟
1 = 𝑘𝑟 = 0,  (𝛾𝑟

0, 𝛾𝑟
2)𝜖𝑅2 

 Expcos sin 𝑘𝑟 = 0, (𝛾𝑟
0, 𝛾𝑟

1, 𝛾𝑟
2)𝜖𝑅3 

 Gpd 𝛾𝑟
1 = 𝛾𝑟

2 = 0, (𝛾𝑟
0 , 𝑘𝑟)𝜖𝑅2 

 Gpdcos 𝛾𝑟
2 = 0, (𝛾𝑟

0, 𝛾𝑟
1, 𝑘𝑟)𝜖𝑅3 

 Gpgsin 𝛾𝑟
1 = 0, (𝛾𝑟

0, 𝛾𝑟
2, 𝑘𝑟)𝜖𝑅3 

 Gpdcos sin (𝛾𝑟
0, 𝛾𝑟

1, 𝛾𝑟
2, 𝑘𝑟)𝜖𝑅4 

 

 

 

Table D1. List of ports with their abbreviations. 5 

Abbreviations Used Harbors 

ABE Aberdeen 

EYRAC Arcachon 

AVO Avonmouth 

BAN Bangor 

BAR Barmouth 

BOUCAU Bayonne 

BOULOGNE Boulogne 

BREST Brest 

CALAIS Calais 

CHERBOURG Cherbourg 

CONCARNEAU Concarneau 

CRO Cromer 

DEV Devonport 

DIEPPE Dieppe 

DOV Dover 

DUNKERQUE Dunkerque 

FEL Felixstowe 

FIS Fishguard 

HAR Harwich 

HEY Heysham 

HIN Hinkley Point 

HOL Holyhead 

ILF Ilfracombe 

IMM Immingham 

KIN Kinlochbervie 

COROGNE La Coruna 

LROCH La Rochelle 

LCONQ Le Conquet 

LCROU Le Crouesty 

HAVRE Le Havre 
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LEI Leith 

LER Lerwick 

LLA LIandudno 

LIV Liverpool 

LOW Lowestoft 

MHA Milford Haven 

MIL Millport 

MOY Moray Firth 

MUM Mumbles 

NHA Newhaven 

NEW Newlyn 

NPO Newport 

NSH North Shields 

OLONNE Olonne 

IOM Port Erin 

PBLOC Port-Bloc 

POR Portpatrick 

PRU Portrush 

PTM Portsmouth 

PORT-TUDY Port-Tudy 

ROSCOFF Roscoff 

SMALO Saint Malo 

SJLUZ Saint-Jean-de-Luz 

SANTANDER Santander 

SHE Sheerness 

JER St. Helier 

STM St. Mary’s 

SNAZA St-Nazaire 

STO Stornoway 

SERVAN St-Servan 

TOB Tobermory 

ULL Ullapool 

VERDON Verdon 

WEY Weymouth 

WHI Whitby 

WIC Wick 

WOR Workington 
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Fig. 1.  The 67 ports along the Spanish, French and U.K. coasts used for the study. Ports are represented by black dots. 
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Fig. 2.  Five physically and statistically homogenous regions within the results of Weiss (2014c) are represented by dots in five 

colors. Inside the red circle is the site of Calais, very close to a border.  

 
Fig. 3.  Spatial extremogram between Calais and all others sites (see Appendix D for the definition of the abbreviations).  5 
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Fig. 4.  Physically homogenous region for Calais represented in red dots found in our study (set number 1). Calais is located 

inside the red circle. The blue dots (set number 2) represent all the sites which are not a part of the physically homogenous 

region built around Calais. 

 5 
 

 
Fig. 5.  Spatial extremogram between Brest and all other sites. 
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Fig. 6.  Physically homogenous region for Brest represented in red dots found in our study (set number 1). Brest is located inside 

the black circle. The blue dots (set number 2) include all the sites which are not a part of the physically homogenous region built 

around Brest. 5 
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 Fig. 7.  Spatial extremogram between La Rochelle and all other sites.  

 
Fig. 8.  Physically homogenous region for La Rochelle represented in red dots found in our study (set number 1). La Rochelle is 

located inside the black circle. The set number 2 (blue dots) includes all the sites which are not a part of the physically 5 
homogenous region built around La Rochelle. 
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Fig. 9.  Physically and statistically homogenous region for La Rochelle represented in red dots found in our study (set number 5 
1). La Rochelle is located inside the black circle. The blue dots (set number 2) includes all the sites which are not a part of the 

physically and statistically homogenous region built around La Rochelle. Eyrac, represented by a blue dot under La Rochelle, 

is now inside set number 2. 
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Fig. 10.  Top left, the regional fitting for the region of Calais. Top right, the regional fitting for the region of La Rochelle. On the 

bottom, the regional fitting for the region of Brest. The red crosses indicate the skew storm surge from the target site, so the 

black crosses show the contribution to the data of the regional approach. The confidence intervals at 70% and 95% are also 5 
shown. 
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