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Abstract. Floodplain and terrace features can provide information about current and past fluvial

processes, including channel response to varying discharge and sediment flux; sediment storage;

and the climatic or tectonic history of a catchment. Previous methods of identifying floodplain and

terraces from digital elevation models (DEMs) tend to be semi-automated, requiring the input of

independent datasets or manual editing by the user. In this study we present a new, fully automated5

method of identifying floodplain and terrace features based on two thresholds: local gradient, and

elevation compared to the nearest channel. These thresholds are calculated statistically from the

DEM using quantile-quantile plots and do not need to be set manually for each landscape in question.

We test our method against field-mapped floodplain initiation points, published flood hazard maps,

and digitised terrace surfaces from seven field sites from the US and one field site from the UK. For10

each site, we use high-resolution DEMs derived from light detection and ranging (LiDAR) where

available, as well as coarser resolution national datasets to test the sensitivity of our method to

grid resolution. We find that our method is successful in extracting floodplain and terrace features

compared to the field-mapped data from the range of landscapes and grid resolutions tested. The

method is most accurate in areas where there is a contrast in slope and elevation between the feature15

of interest and the surrounding landscape, such as confined valley settings. Our method provides

a new tool for rapidly and objectively identifying floodplain and terrace features on a landscape
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scale, with applications including flood risk mapping, reconstruction of landscape evolution, and

quantification of sediment storage routing.

1 Introduction20

Identifying the location of floodplains and fluvial terrace features can provide important insights into

geomorphic and hydrological processes. Understanding the controls on floodplain inundation carries

increasing societal importance, as the frequency of flood events is predicted to increase with the rise

in global temperatures and varying patterns of precipitation caused by climate change (Schreider

et al., 2000; Booij, 2005; Hartmann et al., 2013). Although there are still large uncertainties regarding25

the impacts of climate change on flood frequency (Booij, 2005), identifying floodplains is crucial for

forecasting and planning purposes. On longer timescales, the morphology and structure of fluvial

terraces can provide important information on channel response to climatic, tectonic, and base-level

variations (Bull, 1991; Merritts et al., 1994; Pazzaglia et al., 1998); the relative importance of lateral

and vertical channel incision (Finnegan and Dietrich, 2011); and sediment storage and dynamics30

(Pazzaglia, 2013; Gran et al., 2013).

Attempts to identify floodplains can be classified into two broad families of methods: (i) flood

risk mapping and hydrological modelling; and (ii) geometric terrain classification. Traditionally,

identification of floodplains has relied upon the creation of flood hazard maps, produced through

detailed hydraulic modelling studies (e.g. Noman et al., 2001; Grimaldi et al., 2013). These studies35

tend to incorporate historical flood event information, hydrological analyses, and hydraulic flow

propagation models (Degiorgis et al., 2012). These mature techniques can lead to accurate flood

inundation predictions down to the level of a single building (e.g. Horritt and Bates, 2002; Cobby

et al., 2003; Guzzetti et al., 2005; Hunter et al., 2007; Kim et al., 2012). However, these models

can be computationally expensive and time-consuming to run, even in one dimension, requiring the40

calibration of large numbers of parameters, all with their own uncertainties (e.g. Beven, 1993; Horritt

and Bates, 2002; Liu and Gupta, 2007). This means that hydraulic simulations are usually performed

at cross sections across the channel and interpolated to cover the rest of the stream network (Noman

et al., 2001; Dodov and Foufoula-Georgiou, 2006). For example, floodplain mapping tools have been

developed that incorporate either field-based or modelled stage-duration information at multiple45

cross sections along the channel, and interpolate a three-dimensional water surface between these

sections (e.g Belmont, 2011; Yang et al., 2006).

The introduction of high-resolution digital elevation models (DEMs) has provided the opportunity

of mapping floodplain features much more rapidly and over larger spatial scales than previously

possible (Noman et al., 2001). This had led to the development of many different methods that rely50

on extracting a variety of topographic indices from DEMs, such as local slope, contributing area, and

curvature (Manfreda et al., 2014). One common metric used to predict floodplains is the topographic
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index (φ= ln(A/(tanβ))), whereA is the contributing area to each cell (m2) and β is the local slope

in degrees (e.g. Kirkby, 1975; Beven and Kirkby, 1979; Beven et al., 1995; Quinn et al., 1995; Beven,

1997). The contributing area term reflects the tendency of water to accumulate at certain regions of55

the basin, whereas the slope term represents the tendency for gravity to transport water downhill.

Therefore, high values of the topographic index represent areas which are likely to saturate first, as

they have a large contributing area compared to local slope (Beven, 1997). Manfreda et al. (2011)

suggested a modified version of the topographic index, changing the weighting on the area term by

raising it to an exponent n. This modification allows the relative importance of slope or contributing60

area to be changed by varying the n parameter. They proposed that floodplains can be identified

as cells with a modified topographic index (φm) greater than a threshold value, τ . However, this

method requires calibration of the parameters τ and n through comparing the output floodplain map

with a pre-existing hazard map, and noting the occurrence of true and false positives and negatives

(Manfreda et al., 2011).65

Another geometric method that has been developed to identify floodplains uses a series of lin-

ear binary classifiers for a number of topographic metrics (Degiorgis et al., 2012). Five different

parameters are sampled from the DEM (slope, contributing area, elevation from nearest channel,

distance from nearest channel, and curvature), and each cell is classified as either 1 (floodplain) or 0

(non-floodplain) depending on whether these parameters are above or below threshold values. Each70

of these five metrics can be considered in isolation or in pairs. The thresholds are calibrated using

flood hazard maps, where the number of true and false positives and negatives are noted, similar

to the approach of (Manfreda et al., 2011). For each parameter and threshold value the Receiver

Operating Characteristics (ROC) curve (e.g. Fawcett, 2006) is calculated, which is defined by the

number of true and false positives. The maximum area under the curve is determined to allow the75

threshold value for each parameter to be calibrated, as well as comparisons between each parameter

to be found. The pair of best-performing features was identified as the distance (D) and elevation

(H) from the nearest channel (m). This method is also semi-automated, as it requires the existence

of flood hazard maps for at least some part of the catchment in order to select the correct binary

classifiers for floodplain identification.80

Dodov and Foufoula-Georgiou (2006) distinguish between the ‘geomorphic floodplain’, or GF,

which represents the morphology of the floodplain compared to its natural boundaries, and the ‘sub-

merged floodplain’, SF, which represents the part of the floodplain inundated by a specific magnitude

flood event. The GF will remain fixed over the scale of multiple flood events, and should be clearly

distinguished based on geometric features extracted from the DEM. The SF, however, will vary85

through time with each flood event, and may be more appropriate to determine based on hydraulic

modelling studies. Dodov and Foufoula-Georgiou (2006) present an algorithm for identifying the

GF over large scales based on information on bankfull channel depths. They suggest that the mor-

phology of the GF is defined by the lateral channel migration rate through time, and is controlled
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by the transport of water and sediment by the channel. Therefore, they assume that the geometry of90

the GF is related to that of the channel, and demonstrate a relationship between bankfull channel

depths and floodplain inundation depths which is linear over a range of scales (Dodov and Foufoula-

Georgiou, 2006). Floodplain delineation is carried out by locally filling the DEM up to the depth

of inundation, which is determined based on bankfull channel depths, calibrated using data from

United States Geological Survey (USGS) gauging stations across Oklahoma and Kansas, along with95

field measurements. The depth of inundation at points along the channel network is then used to find

the lateral extent of the floodplain by using the planform curvature of the channel. This method also

requires significant user input, as the channel bankfull depths are required in order to estimate the

GF inundation depth.

The extraction of fluvial terraces (the remnants of previous floodplains) represents a closely related100

problem to the delineation of presently active floodplain surfaces. Previous studies have also used

a geometric approach to identify terrace features from DEMs. For example, Demoulin et al. (2007)

identified terrace surfaces based on local slope and height of each pixel compared to the channel.

They used these attributes in order to reconstruct palaeo-channel profiles from terrace surfaces, but

their methodology was not designed to produce a map of terrace extents on a wider landscape scale.105

Therefore, following on from their approach, Stout and Belmont (2014) presented the TerEx tool-

box, a semi-automated tool to identify potential terrace surfaces based on thresholds of local relief,

minimum area, and maximum distance from the channel. After potential terrace surfaces are iden-

tified, their area and height above the local channel are measured. The tool then allows the user to

edit the terrace surfaces based on comparison with field data. Hopkins and Snyder (2016) evaluated110

the TerEx toolbox, along with two other semi-automated methods for identifying terrace surfaces

(Wood, 1996; Walter et al., 2007) at the Sheepscot River, Maine. They found that all of the methods

overpredicted terrace areas compared to the field-mapped terraces, and the accuracy of the methods

decreased in lower relief landscapes.

The geomorphic methods of mapping both terraces and floodplains outlined above are all semi-115

automated, requiring independent datasets and significant user input. For example, the method pro-

posed by Manfreda et al. (2011) requires the parameters to be optimised using flood inundation

maps from hydraulic simulations. The linear binary classifiers outlined by Degiorgis et al. (2012)

and tested by Manfreda et al. (2014) use flood hazard maps to select the correct threshold for flood-

plain prediction from the geomorphic indices. The TerEx toolbox, developed by Stout and Belmont120

(2014), requires significant user input in order to manually edit the predicted terrace surfaces. No

existing approach to mapping either floodplains or terraces from topographic data includes objec-

tive criteria for setting the thresholds that identify floodplains and terraces. As a result, the different

thresholds that a user might select can result in varying floodplain and terrace maps for the same

input DEM, complicating efforts to consistently map geomorphic features between different land-125

scapes.
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Here we introduce a new, fully automated method of identifying floodplain and terrace surfaces

from topographic data. This method uses two geometric thresholds which can be readily extracted

from DEMs: the gradient of each pixel, and the elevation of each pixel relative to the nearest channel.

Importantly, this method does not require calibration using any independent datasets, as the thresh-130

olds are statistically calculated from the DEM using quantile-quantile plots. We test our method

against field-mapped floodplain initiation points, published flood hazard maps, and digitised terrace

surfaces from seven field sites throughout the US and one site in the UK (Figure 1). For each site,

where available, we use high-resolution LiDAR-derived DEMs, as well as the corresponding national

elevation datasets (10 m resolution for the US and 5 m for the UK) in order to test the sensitivity of135

our method to grid resolution.

2 Methodology

Floodplain and terrace surfaces can be defined as low relief, quasi-planar areas capped by alluvium

and found proximal to the modern river channel. Therefore, field mapping campaigns typically iden-

tify these surfaces as spatially continuous areas with low gradients that occur next to the channel.140

We present a new geometric method which replicates this field approach as closely as possible by

using two metrics which can be readily extracted from the DEM: elevation compared to the nearest

channel, and local gradient. Our method is efficient to run and is fully automated, requiring no input

of independent datasets or field mapping. We outline below the DEM pre-processing steps followed

by the methodology for identifying floodplain and terrace features.145

2.1 DEM pre-processing

The first step of the algorithm is to smooth the DEM in order to remove micro-topographic noise.

Gaussian filters are often used to smooth DEMs, where the smoothing can be described by linear

diffusion. A Gaussian filter results in the DEM being smoothed uniformly at all locations and in all

directions (e.g. Lashermes et al., 2007). However, one consequence of the Gaussian filtering is the150

loss of information where there are sharp boundaries between features due to the uniform smoothing.

Therefore, we filter the input DEM using a non-linear filter proposed by Perona and Malik (1990),

and applied to channel extraction from high-resolution topography by Passalacqua et al. (2010a). The

Perona-Malik filter is an adaptive filter in which the degree of smoothing decreases as topographic

gradient increases (Perona and Malik, 1990; Passalacqua et al., 2010a). This non-linear diffusion155

equation can be described as:

∂th(x,y, t) =5.[p(|5h|)5h] (1)
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where h is the elevation at location (x,y) and time t, 5 is the gradient operator, and p(|5h|) is

an edge-stopping function that specifies where to stop diffusion across feature boundaries, where:

p(|5h|) =
1

1 + (|5h|/λ)2
(2)160

where λ is a constant. Importantly for the identification of low-gradient surfaces, the Perona-Malik

filtering enhances the transitions between features, such as the low-gradient valley floor and the sur-

rounding hillslopes, while preferentially smoothing low gradient reaches of the DEM. Following the

methodology of Passalacqua et al. (2010a), we set the time of forward to diffusion t to 50 iterations

and the calculation of λ as the 90% quantile. We keep these parameters constant across each site165

tested in the study. A full explanation of these parameters and derivation of the Perona-Malik filter

is described by Passalacqua et al. (2010a).

After the DEM is smoothed, we then extract the channel network. Many studies have proposed

different methods for identifying channel networks from high-resolution topography (e.g. Lashermes

et al., 2007; Tarolli and Dalla Fontana, 2009; Passalacqua et al., 2010b, 2012; Pelletier, 2013; Clubb170

et al., 2014). Grieve et al. (2016c) tested the validity of channel extraction algorithms at coarsening

DEM resolution, and found that a geometric method of channel extraction was consistent up to DEM

resolutions of 30 m. This method, described by Grieve et al. (2016b), uses an Optimal Wiener filter

to remove micro-topographic noise from the DEM (Wiener, 1949; Pelletier, 2013). Channelised

portions of the landscape are selected using a tangential curvature threshold (Pelletier, 2013), which175

is defined using quantile-quantile plots as described by Lashermes et al. (2007); Passalacqua et al.

(2010a). These channelised portions of the landscape are combined into a channel network using a

connected components algorithm outlined by He et al. (2008), and thinned using the algorithm of

Zhang and Suen (1984). We chose this algorithm for channel extraction to allow consistency when

running our method on DEMs of varying grid resolutions.180

2.2 Floodplain and terrace identification

After smoothing the DEM, the user can choose to run the terrace and floodplain mapping algorithm

across the whole DEM, or to extract the floodplains and terraces relative to a specific channel of

interest. If the algorithm is run on the whole DEM, the local gradient, S, and relief relative to the

nearest channel, Rc, are calculated for each pixel. These two parameters were chosen on the basis185

that floodplains and terraces tend to form low-gradient regions which are close to the elevation of

the modern channel. Local gradient has been used in previous geometric methods of floodplain

and terrace identification, both in the calculation of the topographic index (Kirkby, 1975; Manfreda

et al., 2011), and in combination with other topographic metrics (e.g. Degiorgis et al., 2012; Stout

and Belmont, 2014; Limaye and Lamb, 2016). Local gradient was calculated by fitting a polynomial190

surface to the DEM with a circular window (e.g. Lashermes et al., 2007; Roering et al., 2010; Hurst
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et al., 2012; Grieve et al., 2016a). The radius of the window is calculated by identifying breaks in

the standard deviation and interquartile range of curvature with increasing window size, following

Grieve et al. (2016a). This allows the window size to be calculated for each DEM to ensure that the

slope values are representative at the hillslope scale, rather than being influenced by smaller-scale195

variations from vegetation (e.g. Roering et al., 2010; Hurst et al., 2012). Rc has also been used in

previous geometric methods (e.g. Degiorgis et al., 2012; Manfreda et al., 2014; Limaye and Lamb,

2016), and is calculated as the difference in elevation between the starting pixel and the nearest

channel pixel, identified using a steepest descent flow routing algorithm (O’Callaghan and Mark,

1984; Braun and Willett, 2013). A threshold Strahler stream order is set by the user such that the200

nearest channel must have a stream order greater than the threshold. This is necessary so that each

pixel is mapped to the main channel along which floodplains or terrace have formed, rather than

narrow tributary valleys. We suggest that a threshold of third order channels is appropriate for most

landscapes, but this can be determined easily by the user from a visual inspection of the channel

network.205

As well as running the algorithm on the whole landscape, the user can also choose to extract

floodplains or terraces relative to a specific channel of interest. The user must provide the latitude

and longitude of two points defining the upstream and downstream end of the channel. The algorithm

then defines a channel network between these points using a steepest descent flow routing algorithm

(O’Callaghan and Mark, 1984; Braun and Willett, 2013). After the identification of the channel, a210

swath profile is created along it following the method outlined in Hergarten et al. (2014) and applied

by Dingle et al. (2016). The user must specify the width of the swath, which can be estimated by

a visual inspection of the DEM, to provide a sufficiently wide swath compared to the valleys in the

landscape. The same two parameters (S and Rc) are used for feature classification for each pixel in

the swath profile, except thatRc is calculated compared to the nearest point on the reference channel.215

After the calculation of slope and Rc, we identify thresholds for each metric in order to provide

a binary classification of each pixel as either floodplain/terrace (1) or hillslope (0). A key feature of

our new method is that the thresholds for Rc and local gradient do not need to be set by the user

based on independent validation, but are calculated statistically from the DEM. These thresholds are

identified using quantile-quantile plots, which have previously been used in the detection of geomor-220

phic process domains (e.g. Lashermes et al., 2007; Passalacqua et al., 2010a). Quantile-quantile plots

are used to determine if a probability density function of real data can be described by a Gaussian

distribution. The transition between process domains can be determined by the value at which the

probability density function of the real data deviates from the Gaussian function (Lashermes et al.,

2007). The real data is plotted against the corresponding standard normal variate, which indicates225

how many standard deviations an element is from the mean. For example, if a value has a standard

normal variate (or z-score) of 1, then it is one standard deviation above the mean, which has a z-score

of 0. A Gaussian distribution plots as a straight line on a quantile-quantile plot, and is modelled for
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each DEM based on a lower and upper percentile of the real data. The percentiles chosen to represent

the reference Gaussian distribution can be set by the user based on the landscape in question, but are230

generally set as the 25th and 75th percentile (Passalacqua et al., 2010a). For each value of the real

data, we calculate the difference between the real data and the Gaussian distribution as a fraction of

the range of the real data (Figure 2). The threshold values for Rc and slope are then identified as the

lowest value at which there is less than 1% difference between the two distributions. Figure 3 shows

an example of the channel relief and slope maps for the Russian River field site, with the calculated235

thresholds for each field site presented in Table 1.

After the selection of pixels which are below the threshold for both S and Rc, the next step of the

algorithm is to assign each pixel as either floodplain or terrace. In order to identify discrete patches

of floodplain or terrace, we run the connected components algorithm of He et al. (2008), which

assigns a unique identifier to each patch. If a patch is connected to the modern channel network it is240

defined as part of the modern floodplain, and if not it is defined as a fluvial terrace. This tool allows

the analysis of spatial extent of floodplain and terrace features (if run across the whole DEM) as well

as the distribution along a specific channel of interest (if run with the swath mode). For example,

in swath mode, the elevation and slope of the terraces can be mapped as a function of distance

upstream along the channel network. This provides numerous potential applications of the method245

for understanding controls on terrace formation and morphology.

3 Study areas

We ran our new method on a total of eight field sites, located in Figure 1. Four of these field sites

were selected to test the ability of the algorithm to identify floodplains, using published flood maps

for the regions. The remaining four sites were selected to validate the algorithm against digitised250

terrace maps. Table 2 summarises the mean annual precipitation and mean annual temperature of

each site, based on data from the PRISM Climate Group (http://prism.oregonstate.edu) for the US

sites and the Met Office (http://www.metoffice.gov.uk/public/weather/climate/) for the UK site. It

also summarises the underlying lithology, the source of the data used for validation, and the grid

resolution. The algorithm was run based on topographic data derived from 1 m LiDAR data for the255

sites where these were available (the Russian River, CA; Mid Bailey Run, OH; Coweeta, NC; the

South Fork Eel River, CA; and the Le Sueur River, MN). For the remaining field sites the topographic

data were generated from the United States Geological Survey National Elevation Dataset 1/3 arc sec

DEM, sampled at 10 m resolution for the US sites, and from the Ordnance Survey Terrain 5 dataset

for the UK site, sampled at 5 m resolution. All DEMs were converted to the Universal Transverse260

Mercator (UTM) coordinate system using the WGS84 datum.
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4 Results

4.1 Comparison with mapped floodplains

We compare the floodplain extent predicted by the our method to field mapped floodplain initiation

points (FIPs) from two of the four study areas: Mid Bailey Run, OH, and Coweeta, NC. A FIP265

was defined as the upstream limit of low gradient surfaces at the same elevation as the channel

banks. As the valley opens out from its more confined upper reaches, these surfaces transition from

discontinuous depositional pockets to more continuous floodplain surfaces (Jain et al., 2008). In this

study we consider the FIP to start at the onset of alluviation outside the channel banks: therefore, we

mapped the start of the discontinuous floodplain pockets at the FIPs in each channel. The onset of270

alluviation often occurred at multiple locations along the same channel: in these cases we took the

location of each FIP downstream along the channel.

A total of 19 FIPs were mapped in Mid Bailey Run, OH, during May–June 2011, and eight FIPs

were mapped in the Coweeta catchment, NC, in May 2014. FIPs in the Mid Bailey Run catchment

were mapped using a Trimble GeoXM GeoExplorer 2008 series GPS with a mean horizontal ac-275

curacy of 6 m. Point locations in the Coweeta catchment were mapped using a Trimble GeoXR

GeoExplorer 6000 series GPS with a mean horizontal accuracy of 1.01 m and a mean precision

of 1.3 m. Figure 5 shows the relationship between the field mapped initiation points and predicted

floodplain extent. In order to compare these field mapped FIPs to our predicted floodplain extents,

we measured the flow distance between the field mapped point and the furthest upstream point of the280

nearest predicted floodplain patch. The distances for each FIP are reported in Table 3, where negative

values indicate that the predicted floodplain initiation was upstream of the mapped, and vice versa

for positive values. There was a mean flow distance of 8± 10 m between the mapped and predicted

for the Mid Bailey Run field site, and a mean flow distance of −6± 7 m for the Coweeta field site.

Along with these field mapped floodplain initiation points, we also compare our predicted flood-285

plain extent to published flood risk maps for three out of the four study areas. For the sites in the

US, flood risk maps were obtained from the Federal Emergency Management Agency (FEMA)’s

National Flood Hazard Layer (https://msc.fema.gov/portal/). The National Flood Hazard Layer is a

compilation of GIS data consisting of a US-wide Flood Insurance Rate map. It contains informa-

tion on the flood zone, base flood elevation, and floodway status for a location. Floodplain extents290

are calculated using a hydraulic model, such as HEC-RAS (Hydrologic Engineering Center-River

Analysis System), incorporating discharge data, cross sectional survey data, and stream characteris-

tics. These studies can be expensive, with a detailed survey on a mile-long reach typically costing

between $10,000 and $25,000 (Committee on FEMA Flood Maps, 2009). The original data were in

the geographic projection NAD1983, and were converted to the projected UTM WGS84 coordinate295

system (Ohio and NC Zone 17N, Russian River Zone 10N). We separate the flood zones into two

categories: areas within the 100 year flood (blue), with a 1% annual chance of flooding, and areas
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with a greater than 100 year flood risk (less than 1% annual risk of flooding). In order to compare

these maps to our method, we gridded the FEMA flood risk maps with a resolution of 1 m. The

Coweeta field site in North Carolina did not have a complete flood risk map for the catchment and300

therefore could not be included in this analysis.

For the River Swale field site in the UK, flood risk maps were obtained from the Environment

Agency’s (EA) Risk of Flooding from Rivers and Sea dataset, which divides the landscape into

50 by 50 m cells (https://data.gov.uk/dataset/risk-of-flooding-from-rivers-and-sea1). Each cell is

categorized into one of four flood risk likelihood categories: high (3.3% annual chance of flooding);305

medium (between 3.3% and 1%); low (between 1% and 0.1%); or very low (<0.1%). The dataset

is created by hydraulic modelling, including information about the state of flood defenses and local

stage heights as inputs to the model. The data were re-projected from the British National Grid

coordinate system to the UTM WGS84 datum, Zone 30N. In order to keep the comparison consistent

with the sites from the US, each pixel was classified into the same two categories as for the FEMA310

maps, with areas of flood risk identified as having greater than 1% annual chance of flooding. The

dataset is provided as vector data: to compare with the floodplain identified by the our method, we

gridded the vector dataset at 5 m resolution (the same as the input DEM). Figure 4 shows examples

of the FEMA and EA flood maps for each study area.

The performance of our geomorphic method of predicting floodplains was compared to flood315

hazard maps by assessing the rates of true positives (TP ), false positives (FP ), true negatives (TN ),

and false negatives (FN ) (e.g. Orlandini et al., 2011; Manfreda et al., 2014; Clubb et al., 2014). Each

pixel is assigned to one of the four categories:

1. True positive TP : The pixel is identified as floodplain by both the geomorphic method and

the flood hazard map.320

2. False positive FP : The pixel is identified as floodplain by the geomorphic method, but not by

the flood hazard map.

3. True negative TN : The pixel is not identified as floodplain by either dataset.

4. False negative FN : The pixel is identified as floodplain by the flood hazard map but not by

the geomorphic method.325

Following the methodology of Orlandini et al. (2011), we report the reliability (r) and sensitivity

(s) for each field site:

r =
∑
TP∑

TP +
∑
FP

(3a)

s=
∑
TP∑

TP +
∑
FN

(3b)
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The reliability, r, is a measure of the ability of the method to not generate false positives. The r330

value can vary between 0 and 1: if the r value is low, then the method is predicting a large amount

of pixels as floodplain which are not identified by the flood hazard maps, whereas as high r value

indicates that the majority of pixels mapped as floodplain are also identified by the flood hazard

maps. The sensitivity, s, is a measure of the ability of the method to not generate false negatives: a

low s value indicates that the method is not identifying many of the floodplain pixels selected by the335

published maps. The r and s values for each site are reported in Table 4, with a visual comparison

between the method and the published flood maps shown in Figure 6. We also report the r and s

values for floodplains extracted from the United States Geological Survey’s 1/3 arc second National

Elevation Dataset (NED), gridded at 10 m, in order to test the sensitivity of our method to grid

resolution.340

The method was most similar to the flood risk maps for the Russian River, CA, with high values

of both reliability (r) and sensitivity (s). The method has a higher sensitivity than reliability for both

DEM datasets, with s= 0.97 and r = 0.74 for the 1 m DEM; compared to s= 0.96 and r = 0.70 for

the 10 m DEM. For both the Mid Bailey Run and Russian River field sites, the sensitivity is higher

than the reliability for all of the DEM resolutions tested (Table 4). However for the River Swale site,345

the reliability is higher than the sensitivity (r = 0.84,s= 0.65).

4.2 Comparison with mapped terraces

We also compare the features extracted by our method to field-mapped terraces from four field sites

throughout the US: the South Fork Eel River, CA (Seidl and Dietrich, 1992); the Le Sueur River,

MN (Gran et al., 2009); the Mattole River, CA (Dibblee and Minch, 2008); and the Clearwater350

River, WA (Wegmann and Pazzaglia, 2002). Two of these sites had 1 m LiDAR-derived DEMs (the

South Fork Eel and Le Sueur Rivers). For the remaining two sites, 10 m DEMs were created from

the USGS 1/3 arc second NED. Terraces in the South Fork Eel River and the Le Sueur River were

digitised from field mapping carried out in previous studies (Seidl and Dietrich, 1992; Gran et al.,

2009), constrained by the hillshaded DEMs. Terraces from the Mattole River and the Clearwater355

River were digitised by Limaye and Lamb (2016) from geological maps, with the terraces mapped

by Dibblee and Minch (2008) for the Mattole River and Wegmann and Pazzaglia (2002) for the

Clearwater River. We ran our method in the swath setting for each of these sites, so that the terraces

were mapped compared to the main stem channel of interest in each site. The thresholds for terrace

identification (Rc and S) were set statistically for each site using the quantile-quantile plots. In order360

to quantify the difference between our method and the digitised terraces, we calculated the r and s

values following the same methodology as for the floodplain comparison (Table 4).

Figure 7 shows a visual comparison of the predicted and digitised terraces from the two sites with

1 m LiDAR-derived DEMs. In general there was good spatial correlation between the two terrace

datasets for each field site, although in some cases the automated method did not identify all terraces365
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at high elevations compared to the modern channel. The South Fork Eel River had the highest values

of both r (0.65) and s (0.72). The comparison between the two terrace datasets for the field sites

with 10 m DEMs is shown in Figure 8. These sites had lower r and s values than that of the South

Fork Eel River, but were comparable to the values for the Le Sueur River (e.g. Table 4).

5 Discussion370

5.1 Floodplains

The results outlined above compare our method of automatic feature extraction to various datasets

of both floodplains and terraces. In order to test the ability of our method in identifying floodplains,

we compared the delineated geomorphic floodplain to both field-mapped floodplain initiation points

and hydrological modelling predictions. We found that our method predicts the location of the field-375

mapped FIPs to within tens of metres for both field sites (Mid Bailey Run, OH; and Coweeta, NC).

The best agreement between the mapped and predicted floodplain points occurs at the Coweeta

field site, with a mean horizontal error of ± 6 m. These results suggest that our method is reliable in

predicting the geomorphic floodplain as identified in the field, as the error between the FIPs is within

the same order of magnitude as the error on the field-mapped coordinates (≈ 1 m for Coweeta and380

≈ 6 m for Mid Bailey Run). Some discrepancies may also be expected due to the difference in dates

between the field mapping (carried out in 2011 for Mid Bailey Run, and 2014 for Coweeta) and the

LiDAR collection (2008/2009 for Mid Bailey Run, and 2009 for Coweeta), as the extent of floodplain

inundation and alluviation may vary through time. In the Mid Bailey Run field site, the predicted

floodplain in the majority of cases was located downstream of the mapped FIPs (Table 3), which were385

contained in narrow headwater valleys (Figure 5). This is not surprising, as our method is based on

identifying areas of low gradient, which is calculated based on polynomial surface fitting with a

specified window radius (Sect. 2.2). Small pockets of alluviation in narrow valleys may therefore

be missed by the method if the width of the floodplain is less than that of the window radius or the

DEM resolution.390

We also validated our method against published flood maps for three of our field sites (Mid Bailey

Run, OH; Russian River, CA; and River Swale, UK). The quality analysis for this comparison (Table

4 and Figure 6) suggests that there is in general a good correlation between our method and the pub-

lished flood maps, with high values for both reliability (r ≥ 0.7) and sensitivity (s≥ 0.65) for each

field site. The results for both the Russian River and Mid Bailey Run showed higher sensitivity values395

than reliability, suggesting that the our method predicted more false positives than false negatives. In

each field site, the published flood maps were classified to define the 1% annual chance of flooding,

or the 100 year return period flood event. It may therefore be expected that our geomorphic-based

method would delineate a larger floodplain than is flooded in a 100 year return period event. The

results for the River Swale, however, show a higher reliability than sensitivity, suggesting that more400
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false negatives were predicted than false positives. This may be due to methodological differences in

the production of this flood map by the Environment Agency (UK) compared to the US sites. Figure

6f shows the published flood map for the River Swale site which, in comparison to the FEMA flood

maps (Figures 6b and 6d) extends into the headwaters of the channel network. As these areas do not

have low gradient surfaces next to the channel, they may not be selected by our method. This may405

account for the higher number of false negatives predicted at this site.

Published flood maps are useful in providing an independent estimate of likely floodplains in each

field site. However, there are potential limitations to these maps which must be carefully considered,

and may result in some of the differences compared to geomorphic floodplain prediction techniques.

Hydrodynamic models have a large number of parameters, which require careful calibration with410

field and hydraulic data, such as channel roughness and discharge data from gauging stations. Fur-

thermore, due to the time-consuming and expensive nature of these studies, flood maps are often

not produced for small catchment sizes, and may therefore be incomplete on a landscape-scale (e.g.

Figure 4). There may also be differences in the methodology used in producing these maps for each

site, depending on the input topographic data and modelling software used. However, despite these415

discrepancies between the flood maps we find a good spatial correlation between these and the pre-

dictions from our method (Figure 6).

In order to test the sensitivity of our method to grid resolution, we also ran the floodplain extraction

using 10 m DEMs derived from the USGS NED for two of the field sites (Russian River, CA, and

Mid Bailey Run, OH), as well as testing it on the River Swale in the UK (5 m resolution DEM). We420

found no observable difference in the reliability and sensitivity results when compared to the 1 m

DEMs (Table 4). This suggests that our method is relatively insensitive to grid resolution, allowing

the identification of floodplain features on coarser-resolution DEMs.

5.2 Terraces

We also tested the ability of our method to identify fluvial terraces in four field sites (South Fork Eel425

River, CA; Le Sueur River, MN; Mattole River, CA; and Clearwater River, WA) by comparing to

digitised terrace maps. Two of these field sites had 1 m LiDAR-derived DEMs (Figure 7) whereas

two had 10 m DEMs from the USGS NED (Figure 8). The quality analysis for the 1 m DEMs

showed the higher reliability and sensitivity values for the South Fork Eel River site (r = 0.65 and

s= 0.72), with comparable values for the remaining three field sites. This may be due to the influ-430

ence of topographic structure on terrace identification. The portion of the Eel River DEM analysed

here has higher relief, with a maximum elevation of 290 m above the nearest channel, compared to

the lower-relief landscape covered by the DEM for the Le Sueur River, with a maximum elevation

of 40 m above the nearest channel. As our method relies on the distribution of relief relative to the

channel in order to select the threshold for terrace identification, it will work best in areas where435

there is a greater contrast between the slope and relief of the terrace surfaces compared to the sur-
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rounding topography. This is similar to other semi-automated terrace extraction methods (e.g. Stout

and Belmont, 2014; Hopkins and Snyder, 2016).

In some cases, our method did not select all of the terraces identified by the field mapping, partic-

ularly at higher elevations compared to the modern channel (e.g. Figure 7c and d). This may be the440

case if the threshold for elevation compared to the channel selected by the quantile-quantile plot is

lower than that of the highest terrace elevations. This can be examined for the landscape in question

by a visual inspection of the quantile-quantile plots and the location of the threshold compared to

the distribution of channel relief (e.g. Figure 2). However, despite this limitation, the selection of the

threshold from quantile-quantile plots allows our method to be fully automated. It does not require445

the input of any independent datasets or field-mapping, unlike previous methods of terrace identi-

fication which are semi-automated (e.g. Stout and Belmont, 2014). These semi-automated methods

are particularly useful in areas where independent datasets of terrace locations are available for cal-

ibration, and may be more appropriate than our method on site-specific scales. However, our fully

automated approach can be applied in areas where these data do not exist, on a broader landscape450

scale, or as a rapid first-order predictor of terrace locations.

In addition to the field sites with LiDAR-derived DEMs, we also tested our method against digi-

tised terraces from two sites with 10 m DEMs gridded from the USGS NED, to examine the perfor-

mance of the method at lower grid resolution. Figure 8 shows the results of the terrace identification

on the 10 m resolution data. The reliability and sensitivity of the method for these two sites (Table 4)455

was lower than that of the South Fork Eel River, but comparable to that of the Le Sueur River. This

suggests that the method is able to successfully select terraces at lower grid resolutions. Although

there are some differences between the terraces predicted by the method and those digitised in the

field, the majority of the terrace features evident from a visual inspection of the hillshaded DEMs

are correctly identified by the algorithm (Figure 8). In some cases, some terrace-like features that460

can be seen on the hillshaded DEMs are not identified in the digitised terrace maps (e.g. Figure 8b).

This may be due to error in the mapping of terrace surfaces in the field, or discrepancies resulting

from the digitisation process.

Fully automated identification of floodplain and terrace features has numerous applications in

the geomorphological and hydrological communities. For example, terrace surfaces have been used465

to examine the response of fluvial systems to tectonic and climatic perturbations (e.g. Merritts

et al., 1994), and to investigate the relative importance of lateral and vertical channel incision (e.g.

Finnegan and Dietrich, 2011). Analysis of terrace areas can be used to quantify sediment budgets and

estimate storage volumes over millenial timescales (e.g. Blöthe and Korup, 2013). Our new method

facilitates the rapid extraction of terrace surfaces either across the whole landscape or compared to470

a representative channel of interest. It allows the user to investigate how various metrics, such as

elevation compared to the channel, slope, and curvature, vary both within and between individual

terrace surfaces (e.g. Figure 7). These metrics could be used in order to examine how terrace heights
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vary with distance along channel profiles, for example, or to identify signatures of deformation cor-

responding to tectonic processes.475

6 Conclusions

We have presented a novel method for the automated identification of floodplain and fluvial terrace

features from topographic data. Unlike previous methods, which tend to require calibration with ad-

ditional datasets, our method is fully objective. Our method selects floodplain and terrace features

using thresholds of local gradient and elevation compared to the nearest channel, which are calcu-480

lated statistically from the DEM. Furthermore, the floodplain or terrace surfaces do not need to be

manually edited by the user at any point during the process. Our method can either be run across the

whole landscape, or from a topographic swath profile, where features can be compared to a specific

channel of interest.

In order to test the performance of our method we have compared it to field-mapped floodplains485

and terraces from eight field sites with a range of topographies and grid resolutions. We find that

our method performs well when compared to field-mapped floodplain initiation points, published

flood risk maps, and digitised terrace surfaces. Our method works particularly well in higher relief

areas, such as the Russian and South Fork Eel Rivers (CA), where the floodplain and terrace features

are constrained within valleys. It is relatively insensitive to grid resolution, allowing the successful490

extraction of floodplain and terrace features at resolutions of 1–10 m.

Our new method has numerous applications in both the hydrological and geomorphological com-

munities. It can allow the rapid extraction of floodplain features in areas where the data required

for detailed hydrological modelling studies are unavailable, facilitating investigation of flood re-

sponse, sediment transport, and alluviation. Furthermore, the automated extraction of terrace loca-495

tions, heights, and other metrics could be used to examine the response of fluvial systems to climatic

and tectonic perturbations, as well as the relative importance of lateral and vertical channel incision.

7 Software availability

Our software is freely available for download on GitHub as part of the Edinburgh Land Surface

Dynamics Topographic Tools package at https://github.com/LSDtopotools. Full documentation on500

download, installation, and using the software can be found at http://lsdtopotools.github.io/LSDTT_

book/

Author contributions. FJC, SMM, DTM, and DAV wrote the software for the feature extraction. MDH, LJS,

and FJC collected the field data for floodplain validation; ABL collected the field data for terrace validation.

FJC performed the analyses, created the figures, and wrote the manuscript with contributions from the other505

authors.
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Figure 1. Maps of the US and UK showing the location of the eight field sites in the study. Red stars represent

floodplain sites; blue stars represent terrace sites. RR = Russian River, CA; ER = South Fork Eel River, CA;

MR = Mattole River, CA; CR = Clearwater River, WA; LS = Le Sueur River, MN; MBR = Mid Bailey Run,

OH; CL = Coweeta Hydrologic Laboratory, NC; RS = River Swale, Yorkshire, UK.
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Figure 2. Example quantile-quantile plots for Mid Bailey Run, Ohio, showing probability density function of

relief relative to the channel and slope. The probability density function of each is shown in blue, with the

reference normal distribution shown by the red dashed line. The threshold (black dashed line) is selected where

there is less than 1% difference between the real and reference distributions. The blue box highlights the portion

of the distribution identified as floodplain.
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Figure 3. Maps showing a) gradient and b) relief relative to the nearest channel, Rc, for the Russian River field

site. The areas of the landscape identified as below the threshold are shown in white, with values above the

threshold then grading to darker colours. In order to be selected as floodplain, each pixel must be below the

threshold for both gradient and Rc. The coordinate system is UTM Zone 10N.
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Figure 4. Shaded relief maps showing a) FEMA flood risk map for the Russian River, CA, UTM Zone 10N and

b) EA flood risk map for the River Swale, UK, UTM Zone 30N. In some parts of the landscape the published

flood maps do not extend all the way up the catchments.

401310
401390

401470
401550

401630
401710

401790

Easting (m)

4365190

4365110

4365030

4364950

4364870

4364790

4364710

4364630

N
or

th
in

g 
(m

)

Mid Bailey Run, OH

277200
277300

277400
277500

277600
277700

3882300

3882200

3882100

3882000

3881900

3881800

3881700

3881600

Coweeta, NC

Figure 5. Shaded relief maps of Mid Bailey Run and Coweeta field sites showing the relationship between the

predicted floodplain (blue) and the mapped floodplain initiation points (red). The UTM zone is 17N.
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Figure 6. Shaded relief maps for each field site showing a comparison between the predicted floodplains (first

column) and the published FEMA/EA maps (second column). (a) - (b) Mid Bailey Run, OH. (c) - (d) Russian

River, CA. (e) - (f) River Swale, UK.
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Figure 7. Shaded relief maps for the two field sites with LiDAR-derived DEMs showing a comparison between

the predicted terraces (red) and the digitised terraces (blue). The predicted terraces are coloured by elevation

compared to the channel, where darker red indicates higher elevation. (a) - (b) South Fork Eel River, CA.

Maximum terrace height is 43 m. (c) - (d) Le Sueur River, MN. Maximum terrace height is 9.5 m.
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Figure 8. Shaded relief maps for the two field sites with 10 m resolution DEMs from the USGS NED showing

a comparison between the predicted terraces (red) and the digitised terraces (blue). The predicted terraces are

coloured by elevation compared to the channel, where darker red indicates higher elevation. (a) - (b) Mattole

River, CA. Maximum terrace height is 50 m. (c) - (d) Clearwater River, WA. Maximum terrace height is 13 m.
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Table 1. Channel relief and slope threshold for each field site

Field site Channel relief threshold Slope threshold

Mid Bailey Run, OH 23.69 0.15

Coweeta, NC 32.80 0.11

Russian River, CA 43.51 0.81

River Swale, UK 39.40 0.05

South Fork Eel River, CA 42.96 0.05

Le Sueur River, MN 9.42 0.05

Mattole River, CA 50.25 0.17

Clearwater River, WA 12.67 0.06

Table 2. Details of climate and lithology for each field site

Field site UTM

Zone

MAP

(mm)

MAT(°C) Lithology Comparison datasets Grid

res. (m)

Russian River,

CA

10°N 1396 14.1 Sandstones and shales,

Quaternary alluvial

deposits

FEMA flood hazard maps 1

Mid Bailey Run,

OH

17°N 1005 10.9 Sandstones, siltstones,

shales

FEMA flood hazard maps

Field-mapped FIPs

1

Coweeta, NC 17°N 1792 12.3 Meta-sedimentary units FEMA flood hazard maps

Field-mapped FIPs

1

River Swale, UK 30 °N 898 8.4 Limestones and

sandstones

EA flood hazard maps 5

South Fork Eel

River, CA

10°N 2009 12.7 Greywackes and shales Digitised terraces (Seidl

and Dietrich, 1992)

1

Le Sueur River,

MN

15°N 793 7.5 Pleistocene tills and Or-

dovician dolomites

Digitised terraces (Gran

et al., 2009)

1

Mattole River,

CA

10°N 2593 12.8 Sandstones and shales,

Quaternary alluvial

deposits

Digitised terraces (Dibblee

and Minch, 2008; Limaye

and Lamb, 2016)

10

Clearwater River,

WA

10°N 3126 9.9 some rocks Digitised terraces (Weg-

mann and Pazzaglia, 2002;

Limaye and Lamb, 2016)

10
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Table 3. Flow distances between the field-mapped FIPs and predicted floodplain extents

Field site Mapped FIP Easting (m) Northing (m) Flow distance1

Mid Bailey Run, OH T2FPI1 401513 4364940 59

T3FPI1 401622 4364773 85

T3FPI2 401661 4364732 -49

WBT1FPI 400090 4363977 -23

WBT2FPI1 399865 4364215 -1

T4FPI 401342 4365472 28

T5FPI2 401072 4365675 0

T7FPI2 400670 4366152 2

T5FPI1 401208 4365807 0

T1FPI1 401443 4365150 0

TX3D3-FPI0 400718 4366277 -42

TX3FPI1 400644 4366126 -5

MBFPI 400449 4366130 -34

T7FPI1 400600 4366074 -19

T4FPI2 401391 4365514 92

T6FPI1 400900 4365921 -20

Coweeta, NC SF5 277212.380 3882554.000 -51

BC1 276326.800 3880661.200 -3

HCW 277641.5 3881694.2 2

BC3 277584.633 3881138.653 -3

HW1 278252.652 3881715.719 13

CB1 278089.041 3882301.638 12

HB1 277444.900 3882919.685 -16

CC2 277098.745 3882348.108 -2

1 The distance between the mapped FIP and the upstream extent of the nearest floodplain patch predicted

by our geomorphic method

Table 4. Results of the reliability (r) and sensitivity (s) analysis for each site

Field site Grid resolution (m) r s

Mid Bailey Run, OH 1 0.73 0.76

10 0.77 0.80

Russian River, CA 1 0.74 0.97

10 0.70 0.96

River Swale, UK 5 0.84 0.65

South Fork Eel River, CA 1 0.65 0.72

Le Sueur River, MN 1 0.58 0.54

Mattole River, CA 10 0.58 0.65

Clearwater River, WA 10 0.56 0.55
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